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DRAM is not scalable anymore ...

» Energy consuming

— Need refresh energy

capacitor — More than 30% of energy
o consumption of a data center
e Not scalable anymore
ﬁ ﬁ — Serious energy dissipation

e Memory bandwidth wall

e Memory capacity wall
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Emerging memory devi

ces are promising.
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e Energy efficient
— No refresh energy
— Non-volatile
e Scalable in theory
— Higher density will be possible
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e Potential to drastically extend the
capacity of main memory

e Potential for 3D-stack integration
drastically increasing bandwidths

e Key technology for upcoming
computing systems
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Intel Optane Data Center Persistent Memory (DCPMM)

e Released in April 2019

e First byte-addressable NVM based on a next-
generation memory device

— 3D-stacked resistive memory cells
— (Possibly) PCM-based

e Connected to the memory bus of CPU via the

DIMM interface Y
Memory
e 128-512 GB per memory module [ Controller }
— A DRAM module is typically 8-32 GB. l

DRAM Optane DCPMM

TTTTTTTTTTTTTTTTTTT ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST)



Latency (ns)

Optane DCPMM’s Latency is quite high.
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The Preliminary Evaluation of a Hypervisor-based Virtualization Mechanism for Intel Optane DC Persistent Memory
Module, Takahiro Hirofuchi and Ryousei Takano, arXiv:1907.12014v1 [cs.0S] 28 Jul 2019
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Optane DCPMM’s Bandwidth is limited.

Direct Access to /dev/imem
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The Preliminary Evaluation of a Hypervisor-based Virtualization Mechanism for Intel Optane DC Persistent Memory

Module, Takahiro Hirofuchi and Ryousei Takano, arXiv:1907.12014v1 [cs.0S] 28 Jul 2019
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Huge Performance Gap in Main Memory

e Optane DCPMM

— Capacity is 10 times larger.
— Latency is 4 times higher.
— Bandwidth is 10%.

e PCM and ReRAM

— Slow write operations

Physical Address

Offset 0 Offset M
— High write energy t
e STT-MRAM

— High write energy

DRAM

e Main memory now becomes hybrid.
e New system software studies are necessary.

Advantage in capacity, but huge difference
in some performance metrics

/

DRAM Emerging Memory Device

t Offset N

Emerging Memory Device

naTionaL INsTITuTE oF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST)



RAMinate: Hypervisor-based Virtualization for Hybrid Main Memory

Virtually create a unified memory combined with DRAM
and byte-addressable NVM (e.g., Optane DCPMM)

* Make it appear like one memory device to an OS and
applications

Everything is done at the hypervisor layer

* Support any OSes and applications without any
modification to them

Maximize the performance of a VM even with a small mixed
ratio of DRAM

« Hot memory pages are automatically relocated to
DRAM (i.e., fast memory)

* Cold memory pages are automatically relocated to
NVM (i.e., slow memory)

https://github.com/takahiro-hirofuchi/raminate
ACM SoCC 2016 Best Paper Award!

The main memory of a VM
(It appears like a DRAM)

f \ 1. Create a unified RAM

[ RAMinate }2. Monitor memory access
(Extended Qemu/KVM) /3 optimize page mappings

DRAM Byte-addressable NVM
(Optane, MRAM, PCM)
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https://github.com/takahiro-hirofuchi/raminate

AIST

Overview of RAMinate (1)

e Allocate the RAM of a VM from the DRAM and NVM pools
e Guest OS sees a uniform RAM composed of one memory device

4 N

Virtual Machine (VM)

L

| | DRAM 16GB
N Y
[ RAMinate (Extended Qemu/KVM) }
1Gy \1563

DRAM Pool NVM Pool
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Overview of RAMinate (2)

1a. Detect read/write-intensive guest physical pages on NVM
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DRAM Pool NVM Pool
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Overview of RAMinate (3)

1b. Detect guest physical pages on DRAM
that have few read/write operations

DRAM Pool NVM Pool
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Overview of RAMinate (4)

2. Swap read/write-intensive NVM pages
with DRAM pages having few read/write requests
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DRAM Pool

Divert read/write traffic to DRAM
(faster memory) behind the guest OS
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NVM Pool
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A Use-case of RAMinate for Optane DCPMM

A VM is set up with 4 GB RAM of the mixed ratio

of 1% DRAM and 99% DCPMM. 1. Just after kernel build started, most memory traffic was from/to
the DCPMM side. But, after RAMinate optimized page locations, the
memory traffic of DCPMM was reduced to 50%.
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A Use-case of RAMinate for Future STT-MRAM

Energy
Consumption of
Main Memory

Assumption:
STT-MRAM is fast like DRAM. However, its write energy is 1072 time larger than that of DRAM.
Hybrid memory with 10% DRAM outperformed DRAM-only memory in terms of energy consumption.

ACM SoCC 2016, Hirofuchi et. al.
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A Software-based Emulator for Non-volatile Main Memory

e Virtually show a target program a slow NVM, by adjusting the execution
speed of the program running on a DRAM-equipped machine

e Fast and accurate

* Aware of asymmetric read/write latencies

Table4  NVM latencies configured by our prototype and measured with
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Fig. 10 Execution time of SPECCPU 2006 benchmarks when setting the emulated NVM read/write
latencies to 500 ns. The results are normalized to no emudation.
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An FPGA-based Emulator for Hybrid Main Memory

e Emulate hybrid main memory systems in
the hardware level
— Set latency, bandwidth and bit-flips in each
physical address range
e Enable detailed performance evaluation
of new system software mechanisms
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Summary

e Emerging memory devices
— PCM, MRAM, ReRAM
— Optane DCPMM
e Main memory now becomes hybrid
— New system software studies are necessary
e RAMinate
— Hypervisor-based virtualization for hybrid main memory systems
e Software-based emulator using cache miss information
— Support asymmetric read/write latencies
e FPGA-based emulator
— Enable system software studies on emerging memory devices
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