AI, Performance and Modeling

Alexandru Calotoiu

Performance

Artificial Intelligence

ORNL - Summit

LLNL - Ravel

Deep Learning Neural Network

Outline

Improving the performance of AI

A. Mazaheri, J. Schulte, M. Moskewitz, F. Wolf, A. Jannesari

Using AI to model performance

M. Ritter, A. Calotoiu, T. Hoefler, T. Reimann, S. Rinke, F. Wolf

Using AI to improve performance

for(i = 0; i <= 255; i += 2)</pre> Ł do something(i); do_something(i + 1); }

R. Mammadli, M. Pradel, M Selakovic, F. Wolf

Enhancing the Programmability and Performance Portability of GPU Tensor Operations

11/4/2019 | Department of Computer Science | Laboratory for Parallel Programming | Alexandru Calotoiu | 4

Convolution & tensors

- Dominate computation (>90% of runtime)
- Similar to generalized matrix-matrix multiply → Massive GPU parallelism
- Difficult to implement efficiently on GPUs

Challenges of implementing convolutions on GPUs

• Fundamental issues (when targeting a particular GPU):

Data movement

Scheduling,

resource-management,

parallelism

TECHNISCHE UNIVERSITÄT

DARMSTADT

Managing overheads

• Portability issues (when targeting multiple types of GPUs):

Incompatible GPU programming models

GPU-hardware-specific constraints

11/4/2019 | Department of Computer Science | Laboratory for Parallel Programming | Alexandru Calotoiu | 7

11/4/2019 | Department of Computer Science | Laboratory for Parallel Programming | Alexandru Calotoiu | 9

Solution: Template metaprogramming

Metaprogramming is writing programs that output programs. It addresses:

OpenCL/CUDA/Vulkan incompatibilities

Use templates and keywords to bridge syntax differences

Load/Store/Multiply sequences

Use code generation to emit long sequences

Control Overhead

Specialize code for particular inputs to remove conditionals

Loop Overhead

Specialize code to make fixed-length and/or pre-unrolled loops

Wide range of input sizes

Select different algorithms (variants)

MetaGPU abstraction layer

- Single source (portability)
- Compatibility layer over our target APIs
- Abstracts away the syntactic differences for the basic GPU programming concepts shared by our target APIs
- Simple to use, very similar to OpenMP

1 Tuning parameters	2 Data layout	3 Kernel body
<pre>#pragma metagpu tuning_knobs { int wg_size_x; int unroll_lvl; }</pre>	<pre>#pragma metagpu data_layout \ in(a,b) out(c) shared(in_smem) { float const * const a; float const * const b; float * c; float in_smem[%(dim)*%(dim)]; }</pre>	<pre>#pragma metagpu kernel_body { for(k=0;k<%(dim);k+=unroll_lvl){ %(sm_loads); BARRIER_SYNC; %(inner_loop_body); } }</pre>

Performance auto-tuning

Quantitative programmability analysis

TECHNISCHE UNIVERSITÄT DARMSTADT

• Programming effort metric:

$$Effort[\%] = \left(\frac{LOC_{MetaGPU}}{LOC_{TotalUniqueLines}}\right) * 100$$

Performance portability [Nvidia GPU]

 Runtime comparison of kernels generated by our method with cuDNN vendor library on Nvidia GTX 1080 Ti.

Conclusion

- Comparative analysis of the GPU programming interfaces CUDA, OpenCL, and Vulkan
- MetaGPU → Generating tensor ops in CUDA/OpenCL/Vulkan

A. Mazaheri, J. Schulte, M. Moskewicz, F. Wolf, A. Jannesari: Enhancing the Programmability and Performance Portability of GPU Tensor Operations. In *Proc. of the 25th Euro-Par Conference, Göttingen, Germany*, volume 11725 of *Lecture Notes in Computer Science*, pages 213–226, Springer, August 2019

Performance modeling at a discount: Predicting performance at scale is hard

Extra-P

$$\boldsymbol{f}(\boldsymbol{p}) = \sum_{k=1}^{n} \boldsymbol{c}_{k} \cdot \boldsymbol{p}^{j_{k}} \cdot \log_{2}^{j_{k}}(\boldsymbol{p})$$

Small-scale measurements

Kernel [2 of 40]	Model [s] t = f(p)
sweep → MPI_Recv	$4.03\sqrt{p}$
sweep	582.19

http://www.scalasca.org/software/extra-p/download.html

Automatic empirical performance modeling with multiple parameters

Search space explosion

Total number of hypotheses to search: 34.786,300,841,019

Heuristics make the search faster

- Hierarchical search
- Modified golden section search

Gathering measurements: A difficult and expensive task

11/4/2019 | Department of Computer Science | Laboratory for Parallel Programming | Alexandru Calotoiu | 19

Sparse modeling – Let's model with less

11/4/2019 | Department of Computer Science | Laboratory for Parallel Programming | Alexandru Calotoiu | 20

Parameter value selection strategy

Sparse modeling accuracy

3 Parameters

Cheap is good!

- 1. Gather the minimum set of measurements
- 2. Create a model

- 1. Gather one additional measurement
- 2. Evaluate previous model
- 3. Create new model

How Deep Learning Makes Compiler Optimization More Effective

Problem

- Compiler optimization results inconsistent when processing semantically-equivalent code [Gong et al., 2018]
- Programs usually spend most of the time in loops
- Which loop representation will yield the best performance?

```
/* original loop */
for(i = 0; i < 256; ++i) {
    do_something(i);
}
/* unrolled, factor = 2 */
for(i = 0; i <= 255; i += 2)
{
    do_something(i);
    do_something(i + 1);
}</pre>
```

Example transformation

Approach

Results

Static mode (w/o validation) Dynamic mode (w/ validation)

1.14x speedup

Top-1 1.23x speedup Top-3 1.28x speedup

Top-5 1.29x speedup

Thank you!

Performance portability [AMD GPU]

 Runtime comparison of kernels generated by our method with the MIOpen vendor library on AMD Radeon RX 580.

Performance portability [Mobile GPU]

• Vulkan performance with and without auto-tuning on Mali G71.

