
Alexandru Calotoiu

AI, Performance and Modeling

Application System

11/4/2019 | Department of Computer Science | Laboratory for Parallel Programming | Alexandru Calotoiu | 2

Performance Artificial Intelligence

LLNL - Ravel

ORNL - Summit

11/4/2019 | Department of Computer Science | Laboratory for Parallel Programming | Alexandru Calotoiu | 3

Outline

R. Mammadli, M. Pradel, M Selakovic, F. Wolf

Improving the performance of AI

A. Mazaheri, J. Schulte, M. Moskewitz,

F. Wolf, A. Jannesari

Using AI to model performance

Using AI to improve performance

M. Ritter, A. Calotoiu, T. Hoefler, T.

Reimann, S. Rinke, F. Wolf

for(i = 0; i <= 255; i += 2)
{

do_something(i);
do_something(i + 1);

}

11/4/2019 | Department of Computer Science | Laboratory for Parallel Programming | Alexandru Calotoiu | 4

Enhancing the Programmability and Performance

Portability of GPU Tensor Operations

1x1x1000

Feature map visualization

Convolution+ReLU Max pooling Fully connected+ReLU Softmax

11/4/2019 | Department of Computer Science | Laboratory for Parallel Programming | Alexandru Calotoiu | 5

Convolution & tensors

Input tensor

C ✕ H ✕ W
Kernel tensor

OC ✕ IC ✕ M ✕ N
Output tensor

H’ ✕ W’

Element-wise

multiplication

Summation

• Dominate computation (>90% of runtime)

• Similar to generalized matrix-matrix multiply Massive GPU parallelism

• Difficult to implement efficiently on GPUs

1 2

11/4/2019 | Department of Computer Science | Laboratory for Parallel Programming | Alexandru Calotoiu | 6

Challenges of implementing convolutions

on GPUs

• Fundamental issues (when targeting a particular GPU):

• Portability issues (when targeting multiple types of GPUs):

Data movement Scheduling,

resource-management,

parallelism

Managing overheads

Incompatible GPU

programming models
GPU-hardware-specific

constraints

11/4/2019 | Department of Computer Science | Laboratory for Parallel Programming | Alexandru Calotoiu | 7

From design to production

In
p
u
t

la
y
e
r

H
W

 l
a
y
e
r

RISK OF

COMBINATORIAL

EXPLOSION

PyTorch

11/4/2019 | Department of Computer Science | Laboratory for Parallel Programming | Alexandru Calotoiu | 8

From design to production with pain

In
p
u
t

la
y
e
r

H
W

 l
a
y
e
r

cuDNN

cuBLAS

MIOpen

rocBLAS

ARM NN

OpenBLAS

?

?

?

?

D
N

N

L
ib

ra
ry

C
o
m

p
.

la
y
e
r

11/4/2019 | Department of Computer Science | Laboratory for Parallel Programming | Alexandru Calotoiu | 9

From design to production without pain

[Performance portable approach]

In
p
u
t

la
y
e
r

H
W

 l
a
y
e
r

Code generator

[Minimal effort to achieve best-known performance on each HW]

11/4/2019 | Department of Computer Science | Laboratory for Parallel Programming | Alexandru Calotoiu | 10

Solution: Template metaprogramming

Metaprogramming is writing programs that output programs. It addresses:

 OpenCL/CUDA/Vulkan incompatibilities

 Use templates and keywords to bridge syntax differences

 Load/Store/Multiply sequences

 Use code generation to emit long sequences

 Control Overhead

 Specialize code for particular inputs to remove conditionals

 Loop Overhead

 Specialize code to make fixed-length and/or pre-unrolled loops

 Wide range of input sizes

 Select different algorithms (variants)

11/4/2019 | Department of Computer Science | Laboratory for Parallel Programming | Alexandru Calotoiu | 11

MetaGPU abstraction layer

• Single source (portability)

• Compatibility layer over our target APIs

• Abstracts away the syntactic differences for the basic GPU

programming concepts shared by our target APIs

• Simple to use, very similar to OpenMP

11/4/2019 | Department of Computer Science | Laboratory for Parallel Programming | Alexandru Calotoiu | 12

Performance auto-tuning

Auto

Tuner

• Thread blocking

• Register blocking

• Loop unrolling factor

• Vector width

• Convolution variants

Tuning knobs

float g[7][7];
float Gg[8][7];
float tmp[8][8];

const GASQ float *B = filts_ref + (k * 3 +
c) * 7 * 7;
for (int i = 0; i < 7; ++i) {
for (int j = 0; j < 7; ++j) {
g[i][j] = B[7*j + i];

}
}

Tensor operation kernel

Lowest runtime

kernel

11/4/2019 | Department of Computer Science | Laboratory for Parallel Programming | Alexandru Calotoiu | 13

Quantitative programmability analysis

• Programming effort metric: 𝐸𝑓𝑓𝑜𝑟𝑡[%] =
𝐿𝑂𝐶𝑀𝑒𝑡𝑎𝐺𝑃𝑈

𝐿𝑂𝐶𝑇𝑜𝑡𝑎𝑙𝑈𝑛𝑖𝑞𝑢𝑒𝐿𝑖𝑛𝑒𝑠
∗ 100

Direct Tiled GEMM 1x1

LOC_MetaGPU 113 115 89 160

LOC_CUDA 562 548 1103 1190

LOC_OpenCL 631 618 1172 1259

LOC_Vulkan 1137 1119 1666 1761

LOC_Total 2330 2285 3941 4210

0

500

1000

1500

2000

2500

3000

3500

4000

4500

L
O

C

Effort 4,85% 5,03% 2,26% 3,80%

On average: ~4 % of

the total effort

11/4/2019 | Department of Computer Science | Laboratory for Parallel Programming | Alexandru Calotoiu | 14

Performance portability

[Nvidia GPU]

• Runtime comparison of kernels generated by our method with cuDNN vendor

library on Nvidia GTX 1080 Ti.

1.86x 1.54x 1.38x

Vulkan can be up to 1.46x faster than cuDNN

11/4/2019 | Department of Computer Science | Laboratory for Parallel Programming | Alexandru Calotoiu | 15

Conclusion

• Comparative analysis of the GPU programming interfaces CUDA,

OpenCL, and Vulkan

• MetaGPU Generating tensor ops in CUDA/OpenCL/Vulkan

1 ~96% programming effort reduction

2 Performance portability on three

different architectures

3 Vulkan can yield faster runtime than

OpenCL

A. Mazaheri, J. Schulte, M. Moskewicz, F. Wolf, A. Jannesari: Enhancing the Programmability and

Performance Portability of GPU Tensor Operations. In Proc. of the 25th Euro-Par Conference, Göttingen,

Germany, volume 11725 of Lecture Notes in Computer Science, pages 213–226, Springer, August 2019

11/4/2019 | Department of Computer Science | Laboratory for Parallel Programming | Alexandru Calotoiu | 16

Performance modeling at a discount:

Predicting performance at scale is hard

Communication

Communication

11/4/2019 | Department of Computer Science | Laboratory for Parallel Programming | Alexandru Calotoiu | 17

Extra-P

Performance model normal form (PMNF)

Generation of candidate models

and selection of best fit

Kernel

[2 of 40]

Model [s]

t = f(p)

sweep →
MPI_Recv

sweep 582.19

Small-scale measurements

http://www.scalasca.org/software/extra-p/download.html

http://www.scalasca.org/software/extra-p/download.html

11/4/2019 | Department of Computer Science | Laboratory for Parallel Programming | Alexandru Calotoiu | 18

Automatic empirical performance

modeling with multiple parameters

Search space explosion

• Total number of hypotheses to search: 34.786,300,841,019

Heuristics make the search faster

• Hierarchical search

• Modified golden section search

11/4/2019 | Department of Computer Science | Laboratory for Parallel Programming | Alexandru Calotoiu | 19

Gathering measurements:

A difficult and expensive task

Low memory

High jitter

Processes

P
ro

b
le

m
 s

iz
e

50

20

40

30

10

4 8 16 32 64

11/4/2019 | Department of Computer Science | Laboratory for Parallel Programming | Alexandru Calotoiu | 20

Sparse modeling – Let‘s model with less

Processes

P
ro

b
le

m
 s

iz
e

50

20

40

30

10

4 8 16 32 64

11/4/2019 | Department of Computer Science | Laboratory for Parallel Programming | Alexandru Calotoiu | 21

Parameter value selection strategy

Function generator

Noise module

f (x1,.., xm) = ck xl

ikl × log2

jkl (xl)
l=1

m

Õ
k=1

n

å

Reinforcement learning agent
Synthetic

measurement

Empirical Model

Extra-P

Evaluation

F
e

e
d
b
a
c
k

Prediction

11/4/2019 | Department of Computer Science | Laboratory for Parallel Programming | Alexandru Calotoiu | 22

Sparse modeling accuracy

20%

40%

60%

80%

100%

P
e
rc

e
n
ta

g
e
 a

c
c
u
ra

te
 m

o
d
e
ls

*

3 Parameters

Measurements used / Percentage of cost

13 / 1.7% 15 / 1.8% 25 / 2.2% 75 / 11% 125 / 100%

Repetitions

2 4 6

11/4/2019 | Department of Computer Science | Laboratory for Parallel Programming | Alexandru Calotoiu | 23

Cheap is good!

1. Gather the minimum set

of measurements

2. Create a model

1. Gather one additional

measurement

2. Evaluate previous model

3. Create new model

?

11/4/2019 | Department of Computer Science | Laboratory for Parallel Programming | Alexandru Calotoiu | 24

How Deep Learning Makes Compiler

Optimization More Effective

Problem

• Compiler optimization results inconsistent

when processing semantically-equivalent

code [Gong et al., 2018]

• Programs usually spend most of the time

in loops

• Which loop representation will yield the

best performance?

/* original loop */
for(i = 0; i < 256; ++i) {

do_something(i);
}

/* unrolled, factor = 2 */
for(i = 0; i <= 255; i += 2)
{

do_something(i);
do_something(i + 1);

}

Example transformation

11/4/2019 | Department of Computer Science | Laboratory for Parallel Programming | Alexandru Calotoiu | 25

Approach

TokensLoop Lexer Sequence

Encoder

Transformation

Sequence

Transformation

Encoder

1.15

Expected

speedup

#

1 for

2 (

.

.

.

250 }

#

unrolling

unrolljam

tiling

interchange

distribution

11/4/2019 | Department of Computer Science | Laboratory for Parallel Programming | Alexandru Calotoiu | 26

Results

Static mode (w/o validation)

1.14x speedup

Dynamic mode (w/ validation)

Top-1 1.23x speedup

Top-3 1.28x speedup

Top-5 1.29x speedup

11/4/2019 | Department of Computer Science | Laboratory for Parallel Programming | Alexandru Calotoiu | 27

Thank you!

11/4/2019 | Department of Computer Science | Laboratory for Parallel Programming | Alexandru Calotoiu | 28

Performance portability

[AMD GPU]

• Runtime comparison of kernels generated by our method with the MIOpen

vendor library on AMD Radeon RX 580.

1.51x 1.85x

Vulkan can be up to 2.28x faster than cuDNN

11/4/2019 | Department of Computer Science | Laboratory for Parallel Programming | Alexandru Calotoiu | 29

Performance portability

[Mobile GPU]

• Vulkan performance with and without auto-tuning on Mali G71.

3.11x

