aachen.de>

lation

Performance
Computing

Imu

r‘. MDD W, N

i) e

N Q
2
|
.
. ’
- - - ———
* .
{ .
v ' 4
o .
’
. 49 Y S -
S ot SRR .
» -
e - A '
. &~ : x
2 A7 o .
. 3 g Y ~
" - -
o T . -y -
R S
» 5 » L4 - v
A ek -
v ey o - 5 -
'L } é
, ‘] .
3 y
.
¥

e
E
O
=
©
9
O
>
&
Vv
| -
9
S
=
n
2]
©
e
=
©
=
o
N
)
O
C
o
e
&)
®
P
e
E
O
=
C
o
>
@)
O
[
O]
——
\"
C
()
>
@)
O
@
T
C
©
—
1)
e
N
@)

(7))
©
O
-
()
=
-
2
Q
2
d
&)
©
)
Y
-
O
Y
O)
=
=
&
©
-
(@))
@)
S
(a
[E
©
-
©
&
=
L
-

November 7th 2019, Tokyo, Japan

Motivation / 1

The future is dynamic

« Dynamic Variability in HPC systems continues to increase
— Processor features (example: Intel Turbo)
— Energy Management (example: Power Capping)
— Detection and Correction of Errors

Our Dynamic Future

Pete Beckman | Argonne National Laboratory and Northwestern University

ast month, as I tossed my bags in a rental car at the

airport, I noticed that the car was particularly new. I

was quite surprised, however, when I drove up to the

first stop sign, and the car suddenly died. It was as if
I had run out of gas or turned off the ignition. However, as
soon as I took my foot off the brake pedal, the engine start-
ed itself back up. I pushed on the accelerator, and the car
jumped forward. Over the next couple of days, I explored
this advanced fuel-saving feature, trying to understand un-
der what circumstances the car’s algorithms would decide it
could save gas by temporarily shutting off and how quickly
I could jump forward after moving my foot from brake to
accelerator as the car automatically started itself and slowly
adjusted the throttle.

Dynamic power management is everywhere, from cars
and mobile phones to home heating and cooling. One of the
key technology changes making advanced power manage-
ment possible for your automobile is the shift to fly-by-wire

controls. The driver
trol system then sel
pressure, all in an ef

end CPUs follow th

damentally change

Algorithmic Efficie
For years, CPUs op
designed to automsz
voltage and clock fi
creased (dynamic

The reduction in p
high-performance g
was frequently disal
speed without slowi
drove up to a stop
colleagues at Lawr,
reported that, to th

Task-parallel Programming for Reactive Numeric

Variation Among Processors Under Turbo Boost
in HPC Systems

Bilge Acun, Phil Miller, Laxmikant V. Kale
Department of Computer Science
University of Illinois at Urbana-Champaign, Urbana, IL, 61801
{acun2, mille121, kale} @illinois.edu

Abstract

The design and manufacture of present-day CPUs causes
inherent variation in supercomputer architectures such as
variation in power and temperature of the chips. The vari-
ation also manifests itself as frequency differences among
processors under Turbo Boost dynamic overclocking. This
variation can lead to unpredictable and suboptimal perfor-
mance in tightly coupled HPC applications. In this study,
we use compute-intensive kernels and applications to analyze
the variation among processors in four top supercomputers:
Edison, Cab, Stampede, and Blue Waters. We observe that
there is an execution time difference of up to 16% among
processors on the Turbo Boost-enabled supercomputers: Edi-
son, Cab, Stampede. There is less than 1% variation on Blue
Waters, which does not have a dynamic overclocking feature.
We analyze measurements from temperature and power in-
strumentation and find that intrinsic differences in the chips’
power efficiency is the culprit behind the frequency variation.
. we analyze p ial i such as d
Turbo Boost, leaving idle cores and replacing slow chips to
mitigate the variation. We also propose a speed-aware dy-
namic task redistribution (load balancing) algorithm to reduce
the negative effects of performance variation. Our speed-
aware load balancing algorithm improves the performance up
to 18% compared to no load balancing performance and 6%
better than the non-speed aware counterpart.

run above their base operating frequency since power, heat,
and manufacturing cost prevent all processors from con-
stantly running at their maximum validated frequency. The
ssor can improve performance by opportunistically ad-
Justing its voltage and frequency within its thermal and power
constraints. Intel's Turbo Boost Technology is an example
of this feature. Overclocking rates are dependent on each
processor’s power consumption, current draw, thermal limits,
number of active cores, and the type of the workload [3].

High performance computing (HPC) applications are often
more tightly coupled than server or personal computer work-
loads. However, HPC systems are mostly built with com-
mercial off-the-shelf processors (with exceptions for special-
purpose SoC processors as in the IBM Blue Gene series and
moderately custom products for some Intel customers [3]).
Therefore, HPC systems with recent Intel processors come
with the same Turbo Boost Technology as systems deployed
in other settings, even though it may be less optimized for
HPC workloads. Performance heterogeneity among compo-
nents and performance variation over time can hinder the per-
formance of HPC li S running on sup

2016 IEEE International Parallel and Distributed Processing Symposium Workshops

Mitigating Processor Variation through Dynamic Load Balancing

Bilge Acun, Laxmikant V. Kale
University of Illinois at Urbana-Champaign, Department of Computer Science
{acun2, kale} @illinois.edu

t—There can be performance variation among same-
cessors in large scale clusters, and supercomputers
aused by power, and temperature variations among
sors. These variations manifest itself as frequency dif-
the processors under dynamic overclocking, such as
»st. Different-model processors also create an inherent
when used in same cluster. For some tightly coupled
ications even one slow processor in the critical path
lown the whole application therefore this variation is
ant problem. To mitigate the performance variation
ocessors, we propose a speed-aware dynamic load
strategy which works on both homogeneous and
geneous hardware. Our main idea is to provide an
1 of the task completion time based when moving a
one processor to another on the processor speed. We
0 30% performance improvement using our speed-
d balancer compared to the no load balancing case.
show that our speed-aware balancer performs 5%
n peed aware part.

Turbo Boost improves the clock speed and therefore the
application performance [2]. However, it can also cause
performance variation among processors. We observe that
there exists up to 30% execution time difference among
same-model processors under Turbo Boost running the same
local computational kernel, as shown in Figure 1. Such
variations can lead to performance degradation, especially
for tightly coupled HPC applications. A slow processor in
the critical path, can slow down the whole application.

To understand the cause of this performance variation,
we look into the frequency and temperature of the proces-
sors. Figure 3 shows the frequency and temperature trends
of tree selected same-model processors with Turbo Boost
turned on in a cluster. Node 42, 48, and 70 demonstrate 3
distinct behaviors. Node-42 is a typical fast node. During
the whole experiment, the temperature of Node-42 remains

Even one slow core in the critical path can slow down the
whole application. Therefore heterogeneity in performance
is an important concern for HPC users.

In future generation architectures, dynamic features of the
processors are expected to increase, and cause their variabil-

ity to increase as well. Thus. we expect variation to become

High

Performance
Computing

Motivation / 2

Tasking to the rescue

Bulk Synchronous Bulk Synchronous
Execution (now) Execution (future)

[|
[l

« Tasking is well-positioned to react
to dynamic system behavior

— Less global synchronization
— More p2p synchronization

3 Task-parallel Programming forﬂactive Numerical Simulation | Dr. Christ'm'@QeeSource: John Shalf i Rm
ig

Performance

Image Source: Jack Dongarra Computing

Agenda

1”‘\@
Intra-node: Task Affinity m %

Inter-node: Task Migration and Replication

Outlook: Al- and Simulation-Based Engineering at Exascale

o
RIKEN

« Conclusions
LUDWIG- m
poveeoel TECHNISCHE
MBRCHES UNIVERSITAT
MUNCHEN
4 Task-parallel Programming for Reactive Numerical Simulation | Dr. Christian Terboven - n{‘ l m I

Performance
Computing

Intra-node: Task Affinity

Computing

Realization in OpenMP

Support for task affinity is part of OpenMP 5.0 released on November 8t", 2019

#pragma omp task [clause..] affinity(list)

i

nt a[N]; // N 1is large

#pragma omp task affinity(a[x-y])

{
}

// task that makes use of a[x],

* Programmer specifies data used by task

Recommended to execute task closely to data location
— Do not prohibit task stealing & load balancing
Runtime identifies the location of the data and schedules task to a close thread

Clear separation between dependencies and affinity

Task-parallel Programming for Reactive Numerical Simulation | Dr. Christian Terboven

High
Performance
Computing

RWTH

Selected implementation details

Jannis Klinkenberg, Philipp Samfass,

Encounter\ R Push to Christian Terboven, Alejandro Duran,
task regiory g C!a?a g local Michael Klemm, Xavier Teruel, Sergi
WV queue Mateo, Stephen L. Olivier, and
Matthias S. Mlller. Assessing Task-
Yes to-Data Affinity in the LLVM
OpenMP Runtime. Proceedings of
Location the 14th International Workshop on
for data_ OpenMP, IWOMP 2018. September
refefe"‘ff in 26-28, 2018, Barcelona, Spain.
1 map~ .
Identify Interesting parts
NUMA
domain where
data is stored
Selgct thread Save Push task into
pinned to {reference, .| other thread d
NUMA location} in || other threads en
i queue
domain map
7 Task-parallel Programming for Reactive Numerical Simulation | Dr. Christian Terboven

- RWTH

Performance
Computing

Evaluation with Applications

How much can this improve applications?

« Little improvements on standard 2-socket systems, more improvement on larger systems

1.75
=Al 1.5

1.25 [[1 Rel. time - domain.lowest A Rel. time - temporal.lowest

II domain.lowest I. temporal.lowest
0.75
0.5
0.25

Rel. execution time
-
Rel. execution time

Execution time [s]
Execution time [s]

l I baseline llvm

16 32 48 64 80 96 112 128 144
threads # threads
(d) Merge sort on 8-socket (h) Health on 8-socket

— Works well working with a lot of data & single task creator scenarios & tasks created in parallel but not all close to data
— Not much room for improvement when: parallel task creator scenarios & tasks are already created where data is located

Intel® Xeon® E7-8860v4 (codename Broadwell)
8 sockets, 18 cores per socket = 144 cores
2.2 GHz base frequency, 1 TB memory

8 Task-parallel Programming for Reactive Numerical Simulation | Dr. Christian Terboven Rm
High
Performance
Computing

Inter-node: Task Migration and Replication

High
Performance
Computing

Motivation: Real-world code example

Dynamic variability caused by application

» Showcase application: sam(oa)?

— Finite-Element and Finite-Volume simulations of dynamic adaptive meshes I
— Space Filling Curves (SFC) and Adaptive Meshes for f ;.'_TE_M@:‘
Oceanic And Other Applications (Tohoku Tsunami 2011) rEM PRy ot
— Developed at TU Munich unia Jf“—, i i
i 1;1: s l
HHH Wiz I
« Depending on situation either refinement T
or coarsening of cell / section = T e
s P
pmEs sy i
gL 3 {4
« Refinement leads to load imbalances f1Y P AR
— after each iteration
— intra and inter node
10 Task-parallel Programming for Reactive Numerical Simulation | Dr. Christian Terboven Mgh Rm

Performance
Computing

Chameleon Approach: Migratable Tasks + Self Introspection

« Migratable task MPI Rank 0 1. Based on periodically collected
— Basic unit of work without side effects Tasks introspection data detect imbalance
— Action + data items (input and/or output) —L dynamically at runtime
7 7
B an be executed locally or /'",_/' Result: Rank 0 is significantly slower
migrated to another rank VA
MPIRank1 [[/ or has more work
Tasks ! J
I'L::'Li 2. Migrate tasks and data to Rank 1

3. Prioritized execution of migrated tasks at
Rank 1 + send back results or outputs

Desired: Migrate as soon as possible
to overlap communication and computation

Tasked-based Execution Self Introspection Consolidation and
Environment Analysis

O Create, queue and Q0 Continuous monitoring of the U Consolidates information

execute migratable tasks current rank from all ranks

O Allows early task migration 0 Determine runtime U Decision making
for load balancing between conditions, load or o Migrate tasks?
ranks/nodes performance metrics o Victim selection

11 Task-parallel Programming for Reactive Numerical Simulation | Dr. Christian Terboven Rm
High

Performance
Computing

Results Experiments — SW-induced Imbalances with sam(oa)?

NIrEE lower is better

= 9.00
o 8.00 |

== w/ migration — 23 threads
== W /0 migration — 24 threads (baseline)

0 3500 7000 10500 14000 17500 21000 24500 28000 31500 34000
Timestep
-10*

Figure 3: Load imbalances between ranks per time step in sam(oa)? for an
application run with 32 nodes/ranks

higher is better
R /
1 2 4 8 16 32
(-3%) (+11%) (H10%) 4 Noes (+12%) (+12%) (+20%)

3.50 1 -m w/ migration — 23 threads
== w /0 migration — 24 threads (baseline)

3.00

Figure 4: Strong scaling experiments with Tohoku tsunami in 2011 for complete
application. Relative speedup to single node base line

« Simulated 60
minutes of Tohoku

tsunami in 2011

» Reduce degree of
imbalance

12

Task-parallel Programming for Reactive Numerical Simulation | Dr. Christian Terboven

High “““"l

Performance
Computing

Outlook: Al- and Simulation-Based Engineering at Exascale

eeeeeeeeeee
Computing

Challenges at Exascale

Tasking may be employed to provide efficient and scalable coupling of SW components

CFD simulations cannot live without modeling approaches
— Becomes worse in multi-physics and multi-scale phenomena, or with interactions such as combustion
— Will be complemented with data-based models

At Exascale, the amount of data may exceed the Exabyte range for single simulation runs
— In-situ data reduction, extraction and interpretation will hence be unavoidable

To utilize HPC resources efficiently, software and workflows must scale to high CPU counts
— In compute-drive applications, analyses are frequently a posteriori, necessitating to have the data on disk
— As the field of parallel and scalable ML and DL is progressing, those algorithms become feasible to be intertwined with

simulation codes implementing full loops

FZJ’s Modular Supercomputing as a prominent heterogeneous pre-Exascale architecture

14 Task-parallel Programming for Reactive Numerical Simulation | Dr. Christian Terboven Rm
High
Performance
Computing

Challenges at Exascale

Tasking may be employed to provide efficient and scalable coupling of SW components

Key expectation: As the field of parallel
and scalable ML and DL is progressing,
those algorithms become feasible to be
intertwined with simulation codes
implementing full loops

15

Task-parallel Programming for Reactive Numerical Simulation | Dr. Christian Terboven

High
Performance
Computing

CHEN
UNIVERSITY

Conclusions

High
Performance
Computing

Reactive Task-parallel Programming

Tasking model is becoming more attractive

 Tasking brings advantages for dynamic systems

* Affinity brings performance improvements
— Including support for complex memory hierarchies

- Reactive MP1+OpenMP task migration for fine-granular load balancing
— Robustness against HW- and work-induced imbalances

« Key expectation: As the field of parallel and scalable ML and DL is progressing, those algorithms become
feasible to be intertwined with simulation codes implementing full loops

Invitation to collaborate

 Future research direction: runtime work for intra-node and inter-node tasking
« Exchange with RIKEN expected to continue
 Also: see proposals from 2018 meeting

17 Task-parallel Programming for Reactive Numerical Simulation | Dr. Christian Terboven Rm
High
Performance
Computing

Vielen Dank
fur lhre Aufmerksamkeit

High
Performance
Computing

