
MYX: "M"ust correctness check for the "Y"ML-

"X"MP multi SPMD programming model
Miwako Tsuji

France-Japan-Germany trilateral workshop :

Convergence of HPC and Data Science for Future Extreme Scale Intelligent Applications

6-8 Nov 2019 Tokyo (Japan)

XMP+YML and FP3C project

 FP3C: Framework and Programming for Post Petascale Computing

 a collaborative project between Japan and France

 September. 2010 – March. 2014

 Various research fields and their integration

 Programming model and programming language design

 Runtime libraries

 Accelerator

 Algorithm and mathematical libraries

 etc…

2013? @ Akihabara

MYX/SPPEXA Project Consortium

 MUST Correctness Checking for YML and XMP Programs.

 International collaboration among Germany (DFG), Japan (JST), and France (ANR).

 Part of the Priority Programme "Software for Exascale Computing" (SPPEXA) in German.

3

• Partner from Germany (project coordinator)

-RWTH Aachen, IT Center and Institute for High

Performance Computing

-Prof. Matthias S. Mueller, Joachim Protze, Christian

Terboven

• Partner from Japan

-University of Tsukuba, Center for Computational Sciences,

and Center for Computational Science, RIKEN

-Prof. Taisuke Boku, Hitoshi Murai, Miwako Tsuji

• Partner from France

-Maison de la Simulation

-Prof. Serge Petiton. Prof. Nahid Emad, Thomas Dufaud

Overview of MYX

 Runtime Correctness check for multi SPMD (mSPMD) programming model

 MUST (Germany)

 YML (France)

 XMP (Japan)

Correctness checking for
XMP in XMP+YML

XMP provides a tool interface
XMPT for analyses

Must checks Correctness
for XMP using XMPT

XMP+YML=
Hieratical and Scalable
Programming Model

YML:
workflow environment

YML orchestrates
multiple applications

XMP parallelizes YML tasks

MUST:
correctness checking
tool for MPI

XMP:
PGAS based parallel
programming language

Trilateral collaboration for scalable and productive computation

Overview of MUST

Multi SPMD (mSPMD) Programming Model / FP3C

 Hierarchical systems

 A node may consist of many general cores and accelerator cores

 NUMA topology in a node

 A group of nodes tightly connected, Network locality

 A system consists of groups of nodes / a cluster of clusters

 Multi-programming methodologies across multi-architectural levels

 Software had been developed to execute applications based on this programming model

CPU
cpucpu

CPU
cpucpu

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

NUMA Node

Heterogeneous

Node

hierarchical systems

Multi SPMD (mSPMD) Programming Model

CPU
cpucpu

CPU
cpucpu

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

NUMA Node

Heterogeneous

Node

hierarchical systems

Shared

Memory

Distributed

Parallel
Workflow

<task 1>

<task 2>

<task 3> <task 4>

<task 5> <task 6> <task 7>

<task 8><task 9>

<task 10>

OpenMP

OpenACC

StarPU, …
Node Node Node

Node Node Node

StarPU

MPI

XMP
YML

UNIVERSITE DE VERSAILLES

SAINT QUENTIN EN YVELINES

 Hierarchical systems

 A node may consist of many general cores and accelerator cores

 NUMA topology in a node

 A group of nodes tightly connected, Network locality

 A system consists of groups of nodes / a cluster of clusters

multi-programming methodologies

across multi-architectural levels

Multi SPMD (mSPMD) Programming Model

CPU
cpucpu

CPU
cpucpu

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

NUMA Node

Heterogeneous

Node

hierarchical systems

Shared

Memory

Distributed

Parallel
Workflow

<task 1>

<task 2>

<task 3> <task 4>

<task 5> <task 6> <task 7>

<task 8><task 9>

<task 10>

OpenMP

OpenACC

StarPU, …
Node Node Node

Node Node Node

StarPU

MPI

XMP
YML

UNIVERSITE DE VERSAILLES

SAINT QUENTIN EN YVELINES

 Hierarchical systems

 A node may consist of many general cores and accelerator cores

 NUMA topology in a node

 A group of nodes tightly connected, Network locality

 A system consists of groups of nodes / a cluster of clusters

multi-programming methodologies

across multi-architectural levels

XcalableMP (XMP)

 Directive based parallel programming
language

 Data distribution and work mapping can be
declared by XMP directives

 XMP Compiler

 Source-to-source compiler

 C+XMP ⇒ C+XMP-runtime library call

 The XMP runtime library uses MPI in its
communication layer

int B[12];

#pragma xmp nodes p(4)

#pragma xmp template t(0:11)

#pragma xmp distribute t(block) ont p

#pragma xmp align B[i] with t(i)

#pragma xmp loop (i) on t(i)

for(i=0; i<12; i++){

B[i] = B[i]*2;

}

0 1 2 3 4 5 6 7 8 9 1110

Node1

Node2

Node3

Node4

a one-dimensional block-distributed array B[]

distributed over four nodes

Data Mapping

Work MappingData can be distributed over different

processes of a task automatically

Multi SPMD (mSPMD) Programming Model

CPU
cpucpu

CPU
cpucpu

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

NUMA Node

Heterogeneous

Node

hierarchical systems

Shared

Memory

Distributed

Parallel
Workflow

<task 1>

<task 2>

<task 3> <task 4>

<task 5> <task 6> <task 7>

<task 8><task 9>

<task 10>

OpenMP

OpenACC

StarPU, …
Node Node Node

Node Node Node

• introduce “parallelism” into tasks by XMP

• “heavy” task can be executed in parallel

Multi SPMD (mSPMD) Programming Model

CPU
cpucpu

CPU
cpucpu

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

NUMA Node

Heterogeneous

Node

hierarchical systems

Shared

Memory

Distributed

Parallel
Workflow

<task 1>

<task 2>

<task 3> <task 4>

<task 5> <task 6> <task 7>

<task 8><task 9>

<task 10>

OpenMP

OpenACC

StarPU, …
Node Node Node

Node Node Node

• divide a large parallel program into some

sub-programs to avoid the cost of

communication in large systems

- coarse grained tasks in a workflow

- moderate size SPMD programs

Multi SPMD (mSPMD) Programming Model

CPU
cpucpu

CPU
cpucpu

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

NUMA Node

Heterogeneous

Node

hierarchical systems

Shared

Memory

Distributed

Parallel
Workflow

<task 1>

<task 2>

<task 3> <task 4>

<task 5> <task 6> <task 7>

<task 8><task 9>

<task 10>

OpenMP

OpenACC

StarPU, …
Node Node Node

Node Node Node

• Compose complex application by

combining parallel appreciations and

libraries

Multi SPMD (mSPMD) Programming Model

CPU
cpucpu

CPU
cpucpu

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

NUMA Node

Heterogeneous

Node

hierarchical systems

Shared

Memory

Distributed

Parallel
Workflow

<task 1>

<task 2>

<task 3> <task 4>

<task 5> <task 6> <task 7>

<task 8><task 9>

<task 10>

OpenMP

OpenACC

StarPU, …
Node Node Node

Node Node Node
Fault detection

and recovery

Multi SPMD (mSPMD) Programming Model

 Scalability

 by combining different parallel programming paradigm across different architectural level

 Reliability

 fault tolerant futures have been supported

 Productivity

 correctness checking by MUST library

Node0 Node1 Node2 Node3 Node4

mpirun

remote program1 remote program2

remote

program3

<task1>

<task4>

<task2>

#pragma xmp loop on t(i)

#pragma xmp task on p(3)

<task3>

MPI_Send(…

MPI_Allreduce(…

MPI_Barrier(…);

(wait) (wait)
remote

program4

<task5>

MPI_Comm_spawn MPI_Comm_spawn

ym
l_

sch
e
d
u
ler

&

O
m

n
iR

P
C

-M
P
I lib

rary

MPI_Comm_spawn

invocation communication

MPI_Send(“task2”, ...

MPI_Send(“task3”, ...

MUST+YML+XMP (MYX)
Overview of execution of mSPMD programming model

Node0 Node1 Node2 Node3 Node4

mpirun

remote program1 remote program2

remote

program3

<task1>

<task4>

<task2>

#pragma xmp loop on t(i)

#pragma xmp task on p(3)

<task3>

MPI_Send(…

MPI_Allreduce(…

MPI_Barrier(…);

(wait) (wait)
remote

program4

<task5>

MPI_Comm_spawn MPI_Comm_spawn

ym
l_

sch
e
d
u
ler

&

O
m

n
iR

P
C

-M
P
I lib

rary

MPI_Comm_spawn

invocation communication

MPI_Send(“task2”, ...

MPI_Send(“task3”, ...

Apply the correctness check by MUST for each task

• Check user defined SPMD tasks (XMP, MPI) by MUST

• Ignore the communication for workflow controls in the

middleware

MUST+YML+XMP (MYX)
Target of correctness check in execution of mSPMD programming model

XMPT Tool Interface

 ... is a generic tool API of XMP.

 Its basic idea is inspired by OMPT.

 event- and callback-based

 (Planned) targets:

 MYX (SPPEXA project by RWTH Aachen, UVSQ, and R-CCS)

 Extrae @ BSC

 Score-P / Scalasca @ JSC

 etc.

Oct. 21, 2019 SPPEXA Final Symposium 18

Basic Design of XMPT

Mar. 18, 2019 19

void xmp_init(){
xmpt_initialize(...);
...
}

void xmp_bcast(...){
(*xmpt_bcast_begin)(...);
xmp_bcast_body(...);
(*xmpt_bcast_end)(...);
}

void xmpt_initialize(...){
xmpt_set_callback(XMPT_BCAST_BEGIN, myx_bcast_begin);
xmpt_set_callback(XMPT_BCAST_END, myx_bcast_end);
...
}

void xmpt_set_callback(...);

void xmpt_initialize(...) __attribute__((weak));

◼At initialization

xmp_init invokes
xmpt_initialize.

Callbacks are registered
through xmpt_set_callback.

◼At each event
void
myx_bcast_begin(...);

void
myx_bcast_end(...);

The registered callbacks are invoked.

Provided by toolsProvided by an XMP compiler.

CRIStAL laboratory, Lille

MUST+YML+XMP (MYX): Implementation

 MUST+MPI / MUST+XMP : to check a single SPMD program

 mustrun –np n application.exe

 prepare a dedicated dynamic library for the application.exe, set the environmental variables

 mpirun –np (n+1) application.exe: 1 process should be kept for the MUST analysis

 MUST+YML+MPI/XMP: to check multiple SPMD program

 Instead of mustrun (mpirun), MPI_Comm_spawn is used to invoke remote SPMD programs in
mSPMD

 extend the middleware of workflow scheduler and the remote program generator in mSPMD

 MPI_* functions in the workflow control are replaced with PMPI_* functions

 MPI_Comm_spwan(“prog”, n, …) ➝ PMPI_Comm_spwan(“prog”, n+1, …)

 preparation steps performed within the mustrun script before mpirun should be performed
before starting a workflow

 set the environmental variables required by MUST manually (Originally, they are set by the
mustrun scprit)

 prepare a dedicated dynamic library to analyze each remote program

Experiments on Oakforest-PACS

 Compare the behavior of workflow applications w/ and w/o error, w/ and w/ MUST

 Evaluate the overhead to apply MUST for tasks in a mSPMD application

 Oakforest-PACS (OFP): supercomputer installed in Kashiwa, operated by U. Tokyo and U.
Tsukuba

 8208 KNL nodes, Connected via Intel Omni Path

 Compiler intel/2018.1.163

 MPI impi/2018.1.163

 30 processes (flat-MPI) for each task, 1, 2, 4, 8, 16, 32 tasks in each application, all tasks are
run simultaneously

Test codes

Allreduce

for(i=0; i<100; i++){
MPI_Allreduce(buf, rbuf, 1, MPI_LONG, MPI_SUM, MPI_COMM_WORLD);
usleep(100000);

}

Allreduce: Type conflict

for(i=0; i<100; i++){
if(myrank==0)

MPI_Allreduce(buf, rbuf, 1, MPI_INTEGER, MPI_SUM,
MPI_COMM_WORLD);

else
MPI_Allreduce(buf, rbuf, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);

usleep(100000);
}

Test codes (cont.
Allreduce: Operation conflict

for(i=0; i<100; i++){
if(myrank==0)

MPI_Allreduce(buf, rbuf, 1, MPI_LONG, MPI_MAX, MPI_COMM_WORLD);
else

MPI_Allreduce(buf, rbuf, 1, MPI_LONG, MPI_MIN, MPI_COMM_WORLD);
usleep(100000);

}

Allreduce: Size conflict

for(i=0; i<100; i++){
if(myrank==0)

MPI_Allreduce(buf, rbuf, 1, MPI_LONG, MPI_SUM, MPI_COMM_WORLD);
else

MPI_Allreduce(buf, rbuf, 2, MPI_LONG, MPI_SUM, MPI_COMM_WORLD);
usleep(100000);

}

Test codes (cont.

Pingpong

for(i=0; i<100; i++){
if(myrank%2==0) MPI_Send(buf, 1, MPI_LONG, dest, tag, MPI_COMM_WORLD);
else MPI_Recv(buf, 1, MPI_LONG, src , tag, MPI_COMM_WORLD, ..);
usleep(100000);
if(myrank%2==0) MPI_Recv(buf, 1, MPI_LONG, src , tag, MPI_COMM_WORLD,..);
else MPI_Send(buf, 1, MPI_LONG, dest, tag, MPI_COMM_WORLD);
usleep(100000);}

Pingpong, Type conflict

for(i=0; i<100; i++){
if(myrank%2==0) MPI_Send(buf, 1, MPI_UNSINGED_LONG, dest, tag, MPI_COMM_WORLD);
else MPI_Recv(buf, 1, MPI_LONG, src , tag, MPI_COMM_WORLD, ..);
usleep(100000);
if(myrank%2==0) MPI_Recv(buf, 1, MPI_LONG, src , tag, MPI_COMM_WORLD,..);
else MPI_Send(buf, 1, MPI_LONG, dest, tag, MPI_COMM_WORLD);
usleep(100000);}

Result (1) Status
w/ MUST w/o MUST

completed? reported? completed? reported?

allreduce w/o

error

completed - completed -

allreduce type

conflict

completed error report completed no

allreduce

operation conflict

completed error report completed no

allreduce size

conflict

failed error report failed simple error

report

pingpong w/o

error

completed - completed -

pingpong type

conflict

completed error report completed no

Result (2) Example of error report from MUST

Result (3) Overhead: MPI_Allreduce

 The overheads depend on the frequency of the communication

 The overhead is ignorable if we don’t perform communication very intensively

 Some overheads even if there is no error if we call MPI_allreduce 100 times per second

0

20

40

60

80

100

1 2 4 8 16 32

NoError-NoMUST NoError-MUST

Error-NoMUST Error-MUST

0

50

100

150

200

1 2 4 8 16 32

NoError-NoMUST NoError-MUST

Error-NoMUST Error-MUST

(sec)
(sec)

tasks tasks

(Allreduce + 1-sec sleep)x100 (Allreduce + 0.01-sec sleep)x10000

0

50

100

150

200

1 2 4 8 16 32

NoError-NoMUST NoError-MUST

Error-NoMUST Error-MUST

0

50

100

150

200

1 2 4 8 16 32

NoError-NoMUST NoError-MUST

Error-NoMUST Error-MUST

Result (3) Overhead: pingpong

 No overhead if there is no error

 The overhead to record errors in the point-to-point communications is large (even when 1
point-to-point communication per second) due to the complexity of MPI function call
dependencies

(sec)
(sec)

tasks tasks

(Send + 1-sec sleep

Recv + 1-sec sleep)x50
(Send + 0.01-sec sleep

Recv + 0.01-sec sleep)x5000

Experiments for XMP-tasks: Test codes

Uncorrect: reduction out of nodes

#pragma xmp task on nodes(1)
{
#pragma xmp reduction (+:sum) on nodes(3)
}

p(1) p(2) p(3) p(4)

task on nodes(1)

reduction on nodes(3) ?

Experiments for XMP-tasks: Results

C
o

n
c
lu

s
io

n
 a

n
d

 f
u

tu
re

 w
o

rk
s MYX: an international collaborative project for higher productivity in exascale computing.

Runtime correctness check by MUST for multi SPMD Programming Model by YML+XMP

 MUST is a correctness checking tool.

 YML is a workflow language (to be presented by Miwako)

 XMP is a directive-based PGAS extension for Fortran & C supporting the global- and local-
view programming.

 XMP+MUST

 XMP provides an interfere, XMPT, for performance tools

 MUST uses the XMPT and check the correctness of XMP

 XMP+YML

 Tasks written in XMP of a workflow managed by YML

 MUST+YML+XMP

 The task generator and middleware in mSPMD have been extended

⇒ Scalable, reliable programming model with high productively

Scalable : Combination of multiple-SPMDs by YML and XMP

Reliable : Fault-detection and recovery are supported

High Productively : XMP, YML are easier than C+MPI

MUST and XMPT provide a debug tool for SPMD

 future works for society 5.0, and IoT era

stream, real time data support in the mSPMD

