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HPC and Big Data convergence

Why HPC and Big Data Should Meet

Two main reasons:

Money: two distributed systems infrastructure: twice the cost to

Deploy
Enhance
Maintain
Operate

Science:

Life science, genomics, astronomy, HEP ... have huge datasets and
may perform some HPC on it. Some of their applications may become
HPC/Big Data standards
Possibilities may let new applications appear
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HPC and Big Data convergence

Why HPC and Big Data Did Not Really Meet yet

Some projects so far have addressed the problem - mainly based on
Hadoop + MPI with no real large adoption:

Integrating HPC tools into Hadoop environment (Hamster, ...): most
of the time not accurate due to application latency, disappointing
results

Deploying Hadoop on Demand on HPC resources (HoD, ...): most of
the time not accurate because of hardware requirements

Many attempts to make Big Data and HPC meet failed because of pitfalls
and fallacies hidden at any level:

Applications

Middleware

Hardware
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Fallacies and Pitfalls: Applications
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Fallacies and Pitfalls: Applications

Fallacy: There is a large, real need for convergence, many
applications will benefit about this

HPC applications

Weather forecast,

Molecular dynamics,

Numerical simulation

...

Big Data applications

Market analysis

Recommender systems

IoT monitoring,

...

Big Data and HPC core markets are different!

Most of Big Data applications are fast-evolving because of the
evolving nature of data available, while HPC applications are more
stable

Real HPC/Big Data applications exists, but they won’t represent the
core of HPC and Big Data development. Maybe some will appear
later.
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Fallacies and Pitfalls: Applications

Pitfall: Programmer team for convergence

HPC programmer

numerical analysts,

Codes in C/C++,

Thinks imperative

...

Big Data programmer

data scientist

code in Python/Java

Thinks functional

...

Big Data and HPC programmers are both computer scientists, but
totally different ones

two different worlds are complicated to coordinate

Thus, a more efficient way to work is to isolate both worlds, and reuse
”black-box” libraries
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Fallacies and Pitfalls: Hardware
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Fallacies and Pitfalls: Hardware

Pitfall: HPC+Big Data hardware

Nowadays HPC and Big Data platforms are different:

HPC Storage = SAN, Big Data = local, cheap disks

HPC and Big Data platforms are not of the same scale: billion of
cores vs. thousands of machines

HPC tries to make full use of CPU/GPU, Big Data is focused on I/O.
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Fallacies and Pitfalls: Hardware

Fallacy: There will be a perfect hardware to address
convergence

Designing a parallel system is often done for a specific kind of application
that can be:

IO-bound

CPU-bound

Memory-bound

As HPC is CPU-bound and Big Data is IO-bound, it means that money
has to be invested on both sides to be to the top:

Hybrid architecture will be by design something not too bad at both,
but not perfect at both.

As an example, big data request high throughput on IO and HPC
request low latency. It will be difficult to address both at the same
time.
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Fallacies and Pitfalls: Middleware

Pitfall: Scheduling theory

Nowadays HPC and Big Data relies on different theoretical ground:

HPC performs most of the time a mix of task and data parallelism

Inter-tasks communications are really different.

Big Data have a tendency to treat all nodes as equals. MapReduce
for example has good scaling property when all nodes perform a Map
simultaneously.

Big Data relies on statistics and good probabilistic properties of data
distribution, while HPC code explicitly distribute data

Things are fast changing and some Big Data environment (Hadoop for
example) now include more support for task parallelism, but there’s still an
enormous gap between the two.
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Fallacies and Pitfalls: Middleware

Pitfall: Middleware

Nowadays HPC and Big Data stacks are different:

Performances: Big Data exhibits larger latency compared to HPC. BD
scaling implies often larger tasks.

HPC is optimized since almost 50 years, 10 years for BigData

HPC code is often optimized for its hardware platform, while BigData
is not that deep into the architecture

Languages and philosophy used in both may be different

Many projects have failed due to the complexity of integrating both stacks.
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Fallacies and Pitfalls: Middleware

What can be learned from all of this?

It’s a bad idea to use Big Data tools on HPC resources: as the scaling
”bottleneck” is Big Data, big data platform may be the underlying
architecture.

HPC tools suffer from the on-demand resource philosophy of Hadoop:
HPC tools must be deployed on long-lived resources, not on volatile
containers.

It’s complicated to integrate such complex and fast evolving stacks
into one: they should avoid dependencies between each other.

If all other locks can be opened, scheduling will have to be considered
carefully.

We then decided to build a prototype working on Hadoop platform, with
non-volatile containers, working at the workflow level, reusing library as
closed source
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Work in Progress: YML on Hadoop

YML

YML ?

French research project active since more than 20 years

Worflow engine relying on an XML-based language to describe
applications

Support for multi-architectural level of parallelism (support for
Partitioned Global Address Space Languages such as XcalableMP
(XMP))

Used on supercomputers around the world, in Europe, Japan and US.

Features:

Workflow programming

parallel and distributed programming

shared-memory parallel programming/accelerator
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Work in Progress: YML on Hadoop

YML basics

Two main parts:

Frontend is platform-agnostic: it provides end users ways to develop
applications

Backend is platform-specific: it provides implementation for tasks and
actual scheduling on the platform

Application development and runtime:

An YML application is described as a DAG-based program composed
of abstract components.

At runtime, implementation component have to be provided for the
abstract component used and the corresponding platform

Worflow engine then starts to run on abstract component and
schedules them by sending which tasks may be ready to be started by
a backend scheduler.
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Work in Progress: YML on Hadoop

Hadoop Overview

Main idea: separating global resource management and application inner
management.

A unique Resource Manager

Handles client requests and fair resource allocation to users
Allocates (Docker-like) Containers

For each application, an Application Master (AM) is running:

Manages tasks (monitor, scheduling)
Asks RM resources and receive it in a Container
Running in a Container itself
Inside AM Execution Engine manages scheduling and resource
allocation

For each node, a NodeManager handles containers and interacts with
RM for monitoring.
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Work in Progress: YML on Hadoop

YARN Overview

(source: Apache )
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Work in Progress: YML on Hadoop

Tez Execution Engine

Manages communications with RM: asks for resources and release
them, handle preemption

Manages the set of Containers already allocated to it

Handles DAG

Eventually release them when useless
Asks for new ones if necessary

Schedules tasks or balance load into Containers

Makes decisions based on information of headroom given by RM, may
not have knowledge about the whole platform.
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Work in Progress: YML on Hadoop

Hadoop + YML: The big picture

Execution

Engines

End user

tools

YARN

Tez backend

YML

DAGs

Resource Manager

MapReduce GiraphMahoutHivePig

DAGsMapReduce Jobs

Spark

ApplicationMaster MR Tez Spark DAG EE

Resource requests and resource freed Containers

Resources states
NodeManager

(Work in Progress)
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Work in Progress: YML on Hadoop

Conclusion

Thanks for your attention!
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