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INTRODUCTION

EXPLORATION-PRODUCTION @ TOTAL AND HPC A SUCCESSFUL PARTNERSHIP

COMPUTE REQUIREMENTS CONTINUE TO GROW AN THERE’S MORE WE WANT TO DO

EXPLORE ALTERNATIVE HPC TECHNOLOGIES: QUANTUM COMPUTING

CONCLUSION



More than 30 years of R&D and innovation

O&G E&P, a challenging environment:
v Reduce Risks, Reduce Cost
v'Open new frontiers
= Improve technology
=»Increase Know How
=> Integrate more advanced technologies

HPC is one of the key element for the integration of:
v More physics,
v" More complex algorithm
v More data from different sources.
v
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O&G E&P in one slide

Seismic acquisition

=)

100s TB data

$100s M

XXXs Gboe

Production Forecast and optimization

100s PF

Seismic Depth Imaging




O&G E&P in one slide

Seismic acquisition

s100s M | IMproving process:

=>» More physics

=>» More complex Algorithm

=>» More integration of different technologies
=» More R&D Imaging

=» More HPC.

XXXs Gboe

Production Forecast and optimization




Seismic depth imaging technology key dates
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More physics, more accurate images
More complex optimization process:
Non linear inverse problem (FWI)

3D full wave equation depth imaging

Emergence of 3D seismic depth i

1990

The 2D space Era
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Seismic depth imaging and HPC a successful partnership
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More physics, more accurate images ~
More complex optimization process: P S

Non linear inverse problem (FWI) - SGI ICE XeHIPP, 2300TF
(>110000 fcores )

cPU Cluster
3D full wave equation depth imaging '

Emergence of 3D seismic depth i . ' + = - cPUSMP
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Vector HPC
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esstul partnership

N T

Seismic depth imaging and HPC a succ

» Reduce Risks r”“Ster
 Be more precise and selective
* Run faster and see better
« Optimize seismic depth imaging workflow
» Reduce Cost
« Opftimize acquisition design
» Better production forecasting, improve EOR
» Open new frontiers
« Better appraisal of new exploration domains

ster




Run faster, see better

- ESE e
0 Hz, 3 days in 2016 o
... Lobe can be seen !

A ———
v' 35 Hz, 30 days in 2012
v ... where is the turbiditic lobe?

Accessing more reserves, previously unseen / undevelopable
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Reduce Risk and Cost

S |

2006 - 3D WAZ seismic
Z breakthrough

(Mad Dog BP 2004)

1995 Four Azimuth
(Nkwane EIf Gabon)

e
K ‘0// 1988 Dual Azimuth
N *e (Bullwinkle Shell GOM)
AP 1975 3D Seismic
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~~Wodeling & processing
~ with HPC

v' Better illumination of complex geological structures

v' Improves imaging process

> 100MS
>50TO

O( 10M$)
O(1TO)

=> saving > $20 M of exploration budget while matching expected quality
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Reduce Risk and accelerate appraisal

Before FWI P» —

WX G¢

Improved resolution
of seismic velocities

v

—
fter FWI (

TOTAL)

Hazards & Pore
Pressure prognosis

Reliable structure

Full wave form inversion of seismic velocities
-> sharper imaging, hazards identification, increased reliability of discovered volumes
= accelerate appraisal & reduce its cost
@ TOTAL



Compute requirement continue to grow

v’ Seismic depth imaging:
v compute better, faster
v' More physics
v' More data integration
v Uncertainty quantification

v' Reservoir simulation:
v Compute faster
v' Better predictability

v Multi real time simulations
v"Inversion of subsurface models
v'operations optimization,

v' cost and risk reduction

Coupled
geomechanics

v More complex targets:
v' strong geological heterogeneity — several reservoirs
v Massive simulations:
v' history matches; uncertainty Mgt on huge models
v New physics for EOR & integration of different processes incl. geomechanics
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And there is more we want to do

Machine learning, HPDA

v Development of new fraining set
and algorithms

v Classification and sampling of large
dataset

v' Physics-constrained neural nefts...

Seismic Trace
Competition classification
cruncher PoC since 90s
Geobodies

PoC
Biomarkers

New Venture Acquisition Production

Pseudo Logs using

— Neural networks :
PoCs Satellite/ (Since 80s) PoC Nanofossils (Non conventional US)

Teledetection

v' 20 years of “routine” application of neural networks for seismic image
analysis

v Competency update in the past 2 years through R&D and Digital “small
scale” projects
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And there is more we want to do

Machine learning, HPDA

v Development of new fraining set
and algorithms

v Classification and sampling of large
dataset

v' Physics-constrained neural nefts...

N\
Technical

Difficulty
. Pattern recognition

. Semantic

Producliivity Gain
7

Exploration Workflow Reduction of time

to get the right information

Seismic

Acquisition /

6 months prep Processing
2 months acq & Imaging

3-12 mont

Interpretation

Reduction of .

manual tasks & Well Preparation

automated feature AEE——————————————— V/
extraction 8-12 months 2-4 months
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And there is more we want to do

Combinatorial optimization Computational material science
v MINLP (Mixed Integer Non Linear v' The ability to accurately model
programming) problems in general ground states of fermionic systems
including: would have significant implications
v Refinery blending, for many areas of chemistry and
v' Scheduling, production, shipping. materials sclence. .
L T T v Catalysis, Solvents, Lubricants,
v' Qil field/reservoir optimization batteries.
T v CO, capture

v
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Crude oil unloading and blending ks

Production uit scheduling
Product blending and shipping




And there is more we want to do

Combinatorial optimization Computational mate™” \
v MINLP (Mixed Integer Non Linear v The abilih”

programming) problems in general grot~

including: ' \)\'\(\g oy
v' Refinery blending, ((\Q , and
v' Scheduling, production, shipping. e CO vent Gricants
v Qil field/reservoir optimization (\C i '
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Compute Power and seismic imaging methods evolution

Computing power Next HPC generation: from 100’s +PF
A
TEF -
100PF =~
2016 Pangea upgrade (6.7P.
10PF e Pangea (2.3PF, 22MW)~O
Rostand (0.4 PF)
e T Ty AAcousicTn
100TF=
10TF=

1TF

1990 1995 2000 2005 2010 2015 2020 Year



Toward complex classical HPC systems

10

40 Years of Microprocessor Trend Data

~d Transistors
v Classical computers have fundamental limits: ‘°: i - S : n d
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= Transistor scaling . ]| - R o
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v HPC systems are likely to become much more heterogeneous  wf ., =™~ ;,:-:,.»'i { fomtecst
and massively-parallel systems T P i B !
= Parallelism limitations: Adhams'law 1970 1980 1990 2000 2010 2020
Year
v End of Moore’s law is expected by around 2025 !
New technologies for thinner chips ACCELERATORS/CO-PROCESSORS
micron: 10 —B : 310000 nm
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Quantum Computing a groundbreaking new approach

Quantum computation exploits the rules of quantum mechanics to process information

Quantum
Theory

1927

Simulating physics with computers-1982
Richard P. Feynman (Nobel Prize in Physics 1965)

“Nature isn't classical, dammit,
and if you want to make a
simulation of nature, you'd better
make it quantum mechanical, and

by golly it's a wonderful problem, =

because it doesn't look so easy.”

09

YEARS

128 qubits
Rigetti

T2 qubits
Google
1152 qubits
DWave

2048 qubits

DWi
512 qubits
DWave

12 qubits 50 qubits
MIT IBM

7qubits 128 qubits | 17 qubits
Los Alamos DWave IBM

2000 2006 001 | 2015 2017 2018

201

6 1

YEARS YEAR

Quantum hardware development is accelerating

Superposition:
« 2 different states simultaneously until ... measurement
Classical bit Quantum bit
-0 i |

e %
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2y Vi
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® |a|? probability to get a, [3]? probability to get 3

N particles in superposition can carry out 2N numbers
a quantum computer can manipulate in parallel

Entanglement:




A very challenging technology

v'Quantum computing is a huge paradigm shift and Quantum algorithmics is a brand new science
v"Quantum Hardware comes in many forms (supra-conductors, ion trap, photonics...).
v Still limited to few ten’s of qubits NISQ (Noisy Intermediate scale Quantum device).

HOWJ'S YOUR THE PROJECT EXISTS
QUANTUM COMPUTER IN A STMULTANEOUS
PROTOTYPE COMING STATE OF BEING BOTH

ALONG? TOTALLY SUCCESSFUL

AND NOT EVEN
STARTED. |

)

Scott Adams/Dilbert

IBM

XANADU




Objectives

v Understand Quantum Computers technology evolution

Classical bit Quantum bit

Q-0 | ”
e @

10) = |“)| = l?] Classical Bit Qubit

¥ =al0 > +8|1 > with jal? + |82 =1

_ ‘J T ‘ 5 e |a|? probability to get a, |3|2 probability to get 3
D’WAVE computer Google: bristlecone Rigetti : 16Q Aspen
. ) Step 1 Step 2 Step 3
v’ Accelerate and build in-house competencies skill set with research partners [ o [0 vnee )
and. hardware providers ecosystem to develop algorithms for Total 519700 1l on amori, - on | —
business use cases Il L[ e
10— H i | L
11— H 4 — )
Initial state Amplitude Amplitude amplification
preparation inversion

v' Take advantage of NISQ technology and be ready when industrial quantum computers become available.
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Anticipated impact ( what we expect)

v" Compute better, compute faster
v" Open new frontiers in R&D for Chemistry, material science, optimization, machine learning,....

o . e ®— b ® I
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Quantum chemistry Quantum combinatorial QML Linear algebra (ODEs,
optimization PDEs, inverse problems)

NISQ device ~ (10% qubits) 3-5 years (pre)-QEC device ~ (1039 qubits) 5++ years




Global program overview

Quantum Computing @ Total

[

Q Hardware
|

—

ATOS QLM - emulator

gate-based (IBM, Rigetti,
google..)

annealer ( D-Wave,..)

hybrid (QC-HPC)

Verification:

!

Q Software Applications
l |
math libraries chemistry, material science <—
y
. optimization, machine
programming models | :
earning
)

hybrid computing

simulation, benchmarking, testing

|

ODEs, PDEs, linear algebra,
%

inverse problem..
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Industrial & academic network
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ATOS 30 and 35 qubit QLM

Programming

AQASM
Assembly language to
build quantum circuits

CIRC

Binary format of
quantum circuits

INTEROP
Connections with
other frameworks

pyAQASM
Python extension to
AQASM

QLIB
AQASM & pyAQASM
libraries

ATOS Quantum Learning Machine functional scope

AtoS
(Buantum
eamin
Maching

QPU Optimization

NNIZER
Topology constraint
solver

QPU PBO Circuit Optimizer

Generic circuit

Quantum processing Pattern based

unit emulation optimizer optimizer

Simulation

SIMULATORS

Simulation modules

SIM OPTIMIZER

PHYSICS

Physical Noise models

Best Simulator dynamic selection

Bull Atos technologies (2018)
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Variational Quantum Computing Algorithms

v Conventional Quantum Algorithms, generally, require long depth circuit:
=» Fault tolerant quantum computer

=>» Challenging with existing NISQ technology

v Employ variational hybrid quantum computing to reduce quantum circuit depth at
the expense of classical optimization: Quantum part Classical part

Quantum circuit

v' Variational Algorithms

v VQE: Quantum Chemistry Application
v QAOA: Combinatorial optimization

v VQSD: Eigen Value Estimation

v VQLS: Linear solver

v VONN: Quantum Neural Network
v,

update 6

PR U R iU S I R U U I — |

From Dawid Kopczyk



Molecular modeling with VOE

VQE - Variational Quantum Eigensolver, by Peruzzo, McClean et al. 2014

Problem definition:

Find the ground state energy of many-body interacting fermionic Hamiltonian, that corresponds to the molecular

potential energy surfaces (intractable by classical computer in case of complex molecular systems with large number of
particles

Finding the ground state energy = solving an eigenvalue problem

H|¥(R)) = E(R)[¥(R))

intractable problem in general!



VQE | from fermions to qubits

|. Fermionic Hamiltonian

H|¥(R)) = E(R)|¥(R))
ll. Second quantization

" 1
H = Z hpqa;;aq + 5 Z hpqrsa;f,a};aras
Pq

prqgrs

lIl. Mapping from fermions to qubits - qubit Hamiltonian
(Jordan-Wigner or Bravyi-Kitaev transformation)

Hq:ZhQPa, P, =01"®03>Q®...0p"



VQE | design
prepare trial state

re
W (6))
o HOIPI¥(9)

™ Hy=) hPy T[> —> E:Inin
«
XYy

£,(8) = (V(68)|H,|¥(6)
= S ha(¥(6)|PalW(8)) —

adjust parameters

(0)

]
4«

optimize
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VQE | applications

Molecular benchmark suite definition oG uration

num_orbitals 6 6 7 9 10 15
num_qubit 12 12 14 18 20 24*
num_shots 500 500 500 500 500 500
maxiter 350 350 350 350 350 350

From Elvira Shishenina (elvira.shishenina@total.com)

Potential use case: Quantum Computing at Adsorption-based CO2 recovery




VONN] Tst example

Explore Variational quantum computing for Neural Network implementation

True test data

LT

RS

P OPop >

39, o ¥t
3 ‘5-{\‘

’.'&'i;

&
the

Example: 1 qubit VQNN classifier

From Data re-uploading for a universal quantum classifier (Adrian Perez-Salinas arXiv:1907.02085), a simple 1 qubit

s

Predictions after training

classifier neural network implemented on the ATOS QLM

-0.5 0.0 0.5

10
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VONN] Tst example

Explore Variational quantum computing for Neural Network implementation

|0> U(x) || U(®e) U(x) || U(©) U(x) || U(6)

True test data Predictions after training

10 - &5 SOhY .. 10 1 A 5\.& o

ﬂ ' 0.’ : ‘ ‘ "00' oo\
5 - ; 5 - “ ) .,-
- o H ’.“ %ﬁov
| 2R | S

J”"‘ m

Example: 1 qubit VQNN classifier

From Data re-uploading for a universal quantum classifier (Adrian Perez-Salinas arXiv:1907.02085), a simple 1 qubit
classifier neural network implemented on the ATOS QLM
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Conclusion

v" Innovation has always been the core of our business

v" R&D and Technology integrator, a key competitive add for Total

v" Compute requirement continue to grow and there is more we want to do:
v' Compute better, compute better
v" Machine learning, big data a new revolution for our industry
v’ Explore new opportunities still intractable on classical HPC

v" Quantum computing is a huge paradigm shift and Quantum
algorithmics is a brand new science

v" Quantum computing can provide new opportunities, opening
new frontiers in R&D in many fields of applications for TOTAL.

GROVER ALGORITHM
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Conclusion

© D.Fletcher for CloudTweaks.com
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