

M. DAYDÉ¹ AND S. REQUENA²

¹ SCIENTIFIC REPRESENTATIVE AT CNRS , HEAD OF INFORMATICS RESEARCH INSTITUTE OF TOULOUSE (IRIT) – TOULOUSE UNIVERSITY – CNRS ² GENCI

TOKYO, NOVEMBER,, 2019

1 CNRS IN A FEW NUMBERS

- A 31,500-strong workforce, including 24,600 permanent personnel, 15,128 researchers and 16,509 engineers, technicians and administrative staff carrying out and supporting research
- 2019 budget: 3.4 billion euros
- Over 1,100 research and service units
- More than 52,000 publications in high-caliber international journals each year, 60 % being published jointly with at least one foreign laboratory
- 21 Nobel prize laureates and 12 Fields Medal winners

National HPC + storage resources management

French strategy for equipping 3 national centres (TGCC, Idris, Cines) Resources available for researchers from **academia and industry** for open research, 1.9 billion core hours and >600 projects / year

→ National dynamics

Expanded into the regions with

Participation in the Europe of HPC

GENCI represents France within PRACE → Joliot Curie as Tier0 (60%) → European dynamics

Promotion of HPC

Among academics and industrials With a specific action towards SMEs

→ Democratisation of the use of HPC and AI in the context of CGI's CEI with Teratec

- □ 3 national centers (Tiers 1)
 - CINES : Occigen
 - TGCC : Joliot-Curie (Tier 1 & Tier 0)
 - IDRIS : Jean Zay

□ Multi anual invest. plan(10 yr) - 39 M€/an

- 2018 TGCC renewal / 2020 extension
- 2019 IDRIS renewal / 2021 extension
- 2021 CINES renewal
- 2022/23 Exascale system (EuroHPC)

Computing power available

- TGCC: 23PF (end of 2019)
- IDRIS: 16 PF (end of 2019)
- CINES: 3,5PF (2016)

Complementary architectures and services

CONTEXT

- « Big data » is the fourth pillar of science
- New paradigms in scientific practices
- **Explosion of data volumes**
 - Numerical simulations (high performance computing) and computing power requirements still growing
 - Experiments, observation and monitoring systems (space, land, sea, air)
- Convergence high performance computing and high throughput data analysis
 - Complex wide area workflows and their data logistics
 - Software platform of distributed services across a continuum of edge, fog and centralised (Cloud, HPC) infrastructures
- Different level of maturity across scientific communities
 - Need to bring communities closer and share beacon of good practices
 - Strengthen new skills and support to users
 - New strategies and architectures... without forgetting energy efficiency !

Al is back

□Why HPC/HTC need AI ?

- For inferring data flows from large scale scientific instruments
 - Stream access, support of end to end workflows (edge to tape)

- For coupling learnt models and simulation codes (cf Gordon Bell'18) toward cognitive simulation
 - Interpolation and extrapolation of long trajectory in MD methods, integration of reduced/surrogate models for multiscale, optimisation / UQ (reducing parameter space), forcing of de models (climate), acceleration the convergence of iterative methods, mesh tuning ...

□Why HPC/HTC need AI ?

- For (in-situ, in-transit) post processing of numerical simulations
 - simulation (learning, inference) storage of pertinent data smart computational steering

- Optimise data movement -> minimise energy
- For better exploiting systems and computing centers
 - Al driven schedulers, improved security, preventive maintenance, optimisation of the infras, ...

□ And AI needs HPC ?

- HPC generates huge amounts of data suitable for AI training
 - Ex : last IPCC campaign in France -> 14 PB of data
- Scale up of the learning phase of neural networks (networks + complex/deep, more data, more classes, ...)
 - HPC provide unique 4 levels of parallelism for massive scaling DNN training (© S. Matsuoka)
 - 1. Hyper parameter search
 - 2. Data parallelism : different batch data
 - 3. Domain decomposition : // layer calculations in propagation
 - 4. Intra chip ILP, vector : // convolutions
- Auto-tuning of the choice of models (Auto DL/ML, AutoAI), use of federated/transfer learning, ...
- Explicability and trust on AI (XAI as a glass box), coupling between formal methods and neural networks, ...

Figure 3 - Les apports de l'IA explicable

2

SCIENTIFIC DATA AT CNRS

- Well established practices and stewardship
 - Nuclear, particle, and astro-particule physics (IN2P3),
 - Earth and space sciences (INSU)
 - Biology (INSB)
 - Humanities and social sciences (SHS)
- On going structuration: Ecology and environment (INEE)
- More varied and less mature on data organization:
 - Physics (INP), Chemistry (INC), Engineering sciences (INSIS)
 - Expected for some large instruments (synchrotrons,...)
- Data and data processing are research objects
 - Mathematics (INSMI)

CNIS

Information sciences and technologies (INS2I)

DATA AT CNRS - MAY, 2019

2.1

PHYSICS: DATA FROM PHOTON AND NEUTRON FACILITIES

- Used for protein and large-molecule crystallography, drug discovery, analysing chemicals / geological materiel / ..., medical imaging, ...
- CNRS Teams generate about 500 TB/year on these facilities
- European initiatives for data analysis and management: PaNdata, PaNOSC,...
- Challenges:
 - · Several scientific communities and devices
 - Increasing volume of data
 - Competency needs for data analysis and management

Reactor Vessel (Al)	H5 H4 H3	Hot Source (C)
Horizontal Cold Source (lig D2)		H25 - H25 H14 - H18
¹⁹ U Case		Vertical Cold Source (liq. D ₂) H12 Control Rod
Shielding H10 D/O Moderator	HUI H7	Security Rods 413

2.2

ECOLOGY AND ENVIRONMENT - 3 LEVELS:

- Collecting data
 - omics (genomics, ...)
 - Collections
 - Observations
 - Experiments
- Data bases
 - Organisation
 - Conservation
- Centers of synthesis:
 - · General / thematic
 - Information / valorisation / diffusion

PATRINAT : « Natural Heritage » (UMS2006) AFB-CNRS-MNHN

- Organize the interoperability of nature data systems to support their sharing.
- Manage national databanks of species and their conservation status, of habitats, of geology and of protected areas.
- Organize the validation, the diffusion and the valorization of all these data allowing to identify the needs of naturalistic knowledge on the French territories.
- Coordinate the establishment of the National Biodiversity Data Center (PNDB)

Founded in January 2017, PatriNat provides expertise and knowledge management missions through a center of expertise on biodiversity and a data center on nature via the INPN platform which gathers to date, more than 42 million data

2.3 COMPUTER SCIENCE

INS2I

v

2.3 DATA IN INS2I

- Data Science and AI at the heart of research in INS2I
 - Large scale infrastructures for data processing and AI: High Performance Data Analytics (HPDA)
 - Innovative data processing and analysis methods: collect, indexation, storage, management, exploitation, valorisation, decisionmaking, accessibility and visualization
 - · AI techniques
 - Expected evolutions in: automatization of information extraction processes, better architectures for Big Data and AI, improved security, exploitation of Open Data
- Digital factory, security and user acceptability are some of the important topics

Conclusions of CNRS report on practises related to data (june 2018)

www.cnrs.fr

- Organization, management, scientific exploitation / valorization of data produced ithin CNRS are major challenges: amounts of data explode
- **Big Data concerns all CNRS research institutes at various levels:**
 - Well established practices and *stewardship* of data (IN2P3, INSU, INSB, INSHS).
- Structuration going on to answer to the needs (INEE)
 - Still embryonic consideration of the data except for some TGIR (INC, INP, INSIS)
 - Data and data analytics are research topics (INSMI, INS2I)
- Logistics and Stewardship of data are two of the main challenges in addition to recruit or train more data scientist
- Important issues: interdisciplinarity, platforms, user support, scalable data analysis workflows, multi-sources data, convergence HPC / HDA (High-End Data Analysis) in complex workflows
- Define new strategies / architectures
- Energy efficiency !

A new paradigm for the research

- Scientific activity undergoes an epistemological upheaval = > new forms of production of knowledge and emergence of several sub-disciplines.
- New fields of investigation born at the interfaces of the scientific disciplines:
 - bioinformatics, computational neurosciences, cyber-security, digital humanities, geoinformatics, ehealth...
 - Example : astroinformatics that incorporates astronomy, astrophysics, computer science and signal processing

FRENCH NATIONAL PROGRAM FOR AI

- National AI initiative announced by President Macron following recommendations of Villani's reports:
 - A Interdisciplinary Artificial Intelligence Institutes selected including the ANITI project in Toulouse
 - > 15 Pflops GENCI supercomputer for AI installed at CNRS IDRIS
 - > Support to user communities and training experts are crucial
- Strategy presented by the President focuses on 4 major challenges:
 - Reinforcing the AI ecosystem in order to attract the very best talents
 - Developing an open data policy, above all in sectors where France already has the potential for excellence, such as healthcare
 - Creating a regulatory and financial framework favouring emergence of "AI champions", through provision of special support to AI research projects and startups

3

Giving thought to AI regulation and ethics, to ensure its development in line with the very best standards of acceptability for citizens

INTRODUCING JEAN ZAY @ IDRIS

One of the biggest converged system in Europe

Objectives

- Support with sovereign and leading edge HPC facilities the French AI research community
- **Foster** synergies between AI and HPC communities
- To be integrated into the French AI plan

□ Converged system ?

HPC + HPDA + AI

New dynamic access modes

- Elastic pool of resources
- Support of containers, notebooks, ...

□Big Milestones

- March 2018 : French "Al for Humanity"
- Jan 2019 : Contract between HPE and GENCI announced
- May 2019 : Installation
- July 2019 : Grands challenges
- October : 2019 Full production
- Start 2020 : 2nd upgrade following ongoing contract of progress
- End 2020 : Major upgrade planned

16PF

A balanced architecture HPE SGI 8600

- Scalar partition (HPC): 1528 nodes, 3056 CPU CSL 6248, 61 120 cores, OPA
- Converged partitions 1292 GPU
 - 261 thin nodes, 1044 GPU V100 32GB, 4xOPA
 - 31 fat nodes, 248 GPU V100 32 GB, 4xOPA

Storage

- 1.3 PB @ 360GB/s full flash (L1)
- 30 PB @ 150GB/s HDD (L2)
- SpectrumScale parallel filesystem

INTRODUCING JEAN ZAY @ IDRIS Some recent updates

Grand challenges projects

- Partial opening to few teams during final acceptance (3 months)
- More than 300% oversubscription
- 32 projects finally accepted
 - 18 HPC and 14 AI
 - From academia and industry
 - HPC on GPU : astrophysics, combustion, material, electromagnetism, medicine

□1st look on the AI Challenges

- From 4 to 1044 GPUs
- medicine, vision, detection activity & weak signals, autonomous driving and crash modelling, in-situ post processing + simulation, image, finance, cryptography and security, adversarial attacks, game theory, agents, video, NLP, autoML and new Al models, energy, geology, plant recognition, ...

□ Full opening of the system : November 2019

Already more than 800% oversubscription of the GPU partition for HPC and Al workloads !
GENCI UPDATE | 13/09/2019 | 25

SOME EARLY RESULTS

HPC and AI for high fidelity combustion

- First large-scale a posteriori test of the network
- Analysis and recommendations for further studies
 are on-going

Principal Investigator : D. Aubert from Obervatoire de Strasbourg

Observatoire astronomique de Strasbourg

□Study of the **reonization** of the Universe = 1 Gyrs after Big Bang

- Will be observed soon by instruments like EELT, JWST or SKA
- For the moment only based on massive and costly simulations coupling gravitation, hydrodynamics and radiative transport
- Idea : couple gravitation/hydrodynamics numerical models AND learnt radiative transport models
 Encoder

- Use of auto-encoders based on TensorFlow and Keras
- Methodology already validated for small cubes of 128 Mpc/256³
- Target = 128 Mpc on meshes of 1024³

Context

- Neural Networks can be fooled using inputs crafted by malicious users
- Various attacks exist: I1, I2, I∞
- Adversarial Training is a technique to train networks that are robust against one specific attack

https://www.pluribus-one.it/sec-ml/wild-patterns

□ Goal: Train neural networks that are robust against all attacks

□ Use of Jean Zay

- Large scale training using CIFAR10 and ImageNet on up to 100 GPUs
- Preliminary results from LAMSADE team
 - Randomized Adversarial Training (RAT) is robust against I. AND I type attacks (Araujo et al. Robust Neural Networks using Randomized Adversarial Training) update 1 13/09/2019 | 29

Principal investigator: Olivier Colliot, ARAMIS Lab (CNRS, Inria, Inserm, Sorbonne, ICM)

Develop and validate deep learning tools for diagnosis from very large scale medical imaging data

Over 20,000 patients **Up to 128 GPUs used**

Results:

 prediction of Alzheimer's with high accuracy

Ongoing:

- model of ageing
- diagnosis of other pathologies

NATIONAL CALL FOR INTERDISCIPLINARY ARTIFICIAL INTELLIGENCE INSTITUTES

Following call for proposals 12 applications issued including the one from Toulouse

• 4 Interdisciplinary Artificial Intelligence Institutes selected:

- O Prairie in Paris
- O Grenoble
- O Nice
- Toulouse
- Guidelines: 1/3 funding from industry, 1/3 from governement, 1/3 from valorization of academic research participation

ANITI INTERDISCIPLINARY ARTIFICIAL INTELLIGENCE INSTITUTE IN TOULOUSE

• Hybrid AI with main application in transports

ANITI: SOME NUMBERS

- 2 strategical application areas: mobility and transportation
- +200 researchers

www.cnrs.fr

3 integrative programs:

- Acceptability, fair representative data for AI
- Certifiable AI toward autonomous critical systems
- Assistants for design, decision and optimized industry processes
- +50 partners

ACTIA AIRBUS OLTRON ALOS		
CAISSE D'EPARGNE Capgemini Ze CERFACS 2 Ontinental's		
ES Sedf BRL CGI IBM (MADO		
LATÉCOÈRE LIEBHERR LINAGORA NO Pierre Fabre		
soprasteria syngenta 🌵 Inserm THALES		
interitation Cones V The icam		

BUILDING A WHOLE ECOSYSTEM IS MANDATORY

- HPC + Big Data + AI not only a ressource management problem but a change of paradigm in scientific research. Need for a new holistic approach built around scientific challenges:
 - Inter/pluridisciplinarity (computer science, mathematics and other disciplines),
 - New methods / algorithms : software challenges
 - Compute / data infrastructures in synergy with large-scale instruments, experimental platforms and observation systems
- Support to user communities and training experts are crucial

Thank for your attention

