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Scientific Discoveries

e Observation and monitoring

e HPC Simulations

e Multi-source data analysis

* Inversion/assimilation

* Machine learning & Al

® Uncertainties & extreme events

Transversal HPC/HDA challenges
e Astronomy & Astrophysics

e Climat, Atmosphere, Ocean
e Solid Earth Sciences

e Continental surfaces and interfaces

Socio-economical applications
e Climate evolution

e Natural Hazards & Environmental changes
* Energetic resources

e Sustainable environmental goals
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Data flux explosion and diversity

Ubiquity and explosion of data

CALIPSO =

e
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Copernicus Calipso

Active volcanos

Data explosion (rate, volume, diversité):
e Edge environments: observation acquisition systems
e Centralised environments (Cloud and HPC): large
ensemble simulations, HDA, data assimilation

New challenges:

» Acquisition: streaming data processing/reduction/compression -> primary data delivery
e Data Management: long-term archiving & curation (metadata, provenance, distribution)
e HDA: multi-source distributed data statistical analysis, ML

* HPC: ensemble of multi-physics and multi-scale simulations, data assimilation, ML

e Data Distribution: multi-source FAIR data services, virtual observatories



Big Data Challenges

Observed and

simulated ‘big data’

Velocity
Speed of
change

Veracity
Uncertainty
of data

Patterns and
knowledge

Real-time critical
in some areas, not all

Confidence
robustness

BigData Challenges

e Flux rate, volume, diversity

e Multi-source, multi wavelength

* Reprocessing and versioning

e Large ensemble simulations

* Interdisciplinary and transdisciplinary
Data Policy and management

* Open Data by default, FAIR data services

® Long-term archiving and curation

e Data veracity, certified repositories

e Software management and certification

Statistical challenges
* Multi-temporal, multi-angular, multi-source
e Non-linear and non-Gaussian
e Data and systemic uncertainties,
® Extreme events
Machine learning challenges
e Few supervised information available
e Computationally intensive and timeliness
e Consistency, learning and interpretability

e Multi source uncertainty propagation



Data-intensive astronomy

Data Intensive Astronom

Exponential
Growth of

Data Volumes ...and

Complexity

From data poverty to data glut

From data sets to data streams

From static to dynamic, evolving data
From offline to real-time analysis

From centralized to distributed resources

Science increasingly driven by large data sets; massive multi-source, multi-wavelength data
Large interdisciplinary scientific collaboration

Science extraction: distributed FAIR data services across instruments (multi-messager)
Increasing use of ML/DL: data analysis and HPC simulations




Astronomy and SKA

Cosmic dawn
(First stars & Galaxies)

Cosmology
(Dark matter, Large-scale
structures)

Time Since the Big Bang
(Billions of Years)

Galaxy evolution
Era of big surveys (gas content & new stars)

LSST: 160 MB/s, ~1.3 TB/night ,~ 30 PB over 5 yrs archived data

LOFAR: ~100 TB/night, ~6-10 PB/yr archived data Cosmic magnetism
CTA: 3-10 PB/yr archived data (origin & evolution)
SKA: 0.1-3 EB/yr archived science-ready data

Fundamental physics
(gravitational waves &
compact objects)

Cradle of life
(Planets, Molecules, SETI)

Modern sky surveys: ~1012 - 1018 bytes images; Catalog: ~108-109° objects (stars, galaxies, etc.)



SKA: community driven BigData pathfinder

On Line processing: high-rate data streams SKA observatory
From edge -> centralised infrastructures

. Edge tlanvironments Centraltl)sid operaflonal I<.abnv;.ronments SKA regional e« High-rate data stream logistics
ata stream logistics, processing, ataiprocessing;icaliofation i . i i
oy o I ———— centres » Stateful netwgrk services : cachlng/bufferlng .
Observatory * Edge computing: numerical beam forming of signals ;

SKA1-LOW

removal of radio-frequency interference
* Data loss-compression and reduction
* Dynamic stream structures: observation dependent
Centralised HPC/HDA operational infrastructures
* Storage and computing capabilities/capacities
* High-rate data processing
* Complex HDA workflows (processing & calibration)
Primary data productS (events, images, cubes)

* Data models (standards, metadata, provenance)
* Archiving and dynamic distribution (data placement)

- > Machine Learning moving to the edge
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data archiving, data reuse

Distributed scientific environments
Data analysis, secondary data products,
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= Telescope site = 300 PB/yr

SKA1-MID

SKA Regional Centres (SRCs)

SKA New organisational, operational, business model
Observatory o Ao R F
S e [ Commqnlty driven shaplng strategy 3
e Co-designed (SKAO, providers, scientific users)
ol B o Scientific software platform

archive usingotherdata e Dijstributed services across shared infrastructures
user  WERSKAdat ', Multi providers (Cloud, HPC, Data), Federated AAI
* Application-dependent global resource optimisation

Application workflows

Off Line SRC processing: multi-providers context

SKA KSP, Pls, user community

SKA
Regional Centres

multi-source data analysis, science data products
data archiving and reuse

Scientific platform of distributed services
Data, Computing (HDA, HPC, Al), Archiving  Diversity of complex workflows (HDA, HPC, Al)

NREN/International Data Logistics SKA . e Data logistics all along in multi-provider context
| AESSEEEIEESIER o Workflow management and provenance system

SRC2 600 PB/yr Data archiving, curation and reuse

ﬁ E e Primary and secondary scientific data products
e FAIR multi-source data services (federated)
=

Scientific Users

o Key SKA Projects and Pl granted observation projects
— — e Reuse of SKA data products: multi-messenger and

Existing Shared centralised Infrastructures (HPC, Cloud, Al, Data) multi-wavelength approaches
-> HPC/HDA in centralised infrastructures

Shared with other communities: Space Observation, Earth Systems Observation, HEP




AMA-DEUS: N-Body simulation

HPC grand challenge ,210h'Gpe
* 550 billion particles . ‘
e 2.5 trillion computing points ; 108 hGpe
® 50 million CPU hours (> 5700 years) "
® 76 032 cores & 300 Tb memory ‘

* > 50 Gb/s data throughput (PFS) e Tt
e 1 500 Pbs reduced on fly to 1 500 Tbs

3.0 h''Gpc
303 billion particles

Intermediate snapshots o Sample : files / size

8192° particles files / size (per output) . : (over 474 outputs)
4752 nodes THE AMA"DEUS WORKFI-OW Main snapshots . B e , Ligthcones:: files /size
files / size (per output) . (per lightcone)
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Challenges An end-to-end workflow ! NATION

® dynamic load balancing

* smart parallel I/O optimisation

® reduction of raw data (time) ->
in-situ & post processing

* physical objects -> on-the-fly

processing workflow Snapshots ~16 x 16 TB  Samples ~40 TB Halos/catalogs ~50 TB  Lightcones ~ 5x10 TB



DL: de-noising & analysis hyper-spectral imaging radio astro

Observed image Orion-B Reconstructed image
spectral band 30/40/50  pety et al, 2017 spectral band 30/40/50

IRAM 30 m Telescope ‘ . .
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Climate system: a scientific and societal chalenge

Modeling the Climate System

Several complex and multi-physics processes to be ncudes e imosshore,

Land, Oceans, Ice, and Biosphere
Energy Outgoing Heat

simulated l e

Solid to Vapor

Evaporative
I and Heat Energy
Exchanges
Cumulus Cirrus Clouds Atmospheric
Clouds

GCM

Several interacting processes

Snow Cover

(Te mgomds
Precipitation)

Large range of time scales: from days to months, years,
decades and millennia

------ - & Stratus Clouds

Atmospheric Model Layers

4 glacial cycles recorded in the Vostok ice core

f /
il l

%0 , l ! V‘ ," *! : :

2 k b /w VIR, 5

| 1

U ‘ *H u E

“"“"" "1‘ y bJ\ \“ 'Y \ 4 N\'

400 350

60 \/"\
In
\
‘A

e )

Comprehensive modelling of
climate systems and variability

Large range of space scales: from local to regional,
continental and global

El Nifio Conditions

Understanding detection,
attribution and prediction of
extreme events and modes of
climate variability

2000 2020 2040 2080 2080 2100
ar

Inherently non-linear dynamical Earth systems Climate science, impacts and

CPU demanding <-> large volume of data societal services



Climate simulations and observations
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- : Flexible provenance-driven system
——
daemonized message consumers . . .
Avjourdhu : e Provides run-time feedback with tuneable metadata
* 100 utilisateurs .
o BT . as10jobjour  and provenance-driven controlled data movement
MongoDB Postgres .-“

dB server

* Avoids useless waits for long and unfruitful runs
* Fosters dynamic steering, diagnostics (saving
computing cycles, storage and energy!)

web server

jupyter notebook m m



Numerical laboratory: Earth System Grid Federation

4 ESGF Test Infrastructure based on virtual machines )
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Observation: in situ (land/sea), air and space
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Cloud, aerosol, extreme weather radar

* Ground and satellite cloud observations

* |dentify atmospheric instability (convective, baroclinic)

* Monitor various data (e.g. temperature, pressure, humidity)

* Track precipitable water (weather radar) and extreme
phenomena (e.g. storm, cyclones)

® Machine learning, Deep learning

Ocean satellite and in situ Argo observation analysis

* Large amount of 4D in-situ data (3D space + time)

e Non stationary (mean and covariance) and non Gaussian
e Combined with satellite SSH and mooring data

* Spatial-temporal modelling (adding vertical dimension) _ ,
* Machine learning, Deep learning o =1

Probe

Circuit boards &
satellite transmitter

Hydraulic pump
(piston)

Hydraulic fluid

Hydraulic
bladder




Data assimilation: numerical weather prediction

TA Background forecast
a2 ]
v 1
A § . _° Forecast
Tp @ 2 b = Weather balloon
- ~ a® 28 "o . g ¢ o ol ‘
i che WO AT BRI
; En v ¢ " o Rt nalysis i
Analysis Analysis Analysis Analysis :
= 1
Le Dimet and Talagrand (1986) : From ECMWEF
Carrasi et al (2018) :
1 1 1 1 1 : 1 >
06 UTC 12 UTC 18 UTC 00 UTC 06 UTC 12 UTC

- >
24-hour assimilation window

From edge: streaming data processing and reduction

to centralised infrastructures (HPC, Cloud):
large ensemble simulations & Bayesian inference

RIKEN Advanced Institute for Computational Science
Data Assimitation Research Team

Multi-source observations

Analysis ensemble mean

e VL L e
N,/ & JiEmet, —s &

Observation = (100m BigDA)

Approximation to KF with
ensemble representations

5X! (5X{ )T

m — 1

Simulation T
(tkm DAY

p/ ~

Oeospio;al_mlumncnon Authogy

30 minutes forecasting

+ Multi-source uncertainties FCST ensemble mean T. Miyoshi, Riken aics
Particle filters

e Data assimilation is equivalent to a machine learning problem (Abarbanel et al (2018), Bocquet et al (2018)

e Artificial Intelligence: a natural framework to take up challenges of Earth Observation and Modelling



ML accelerated workflow, data logistics

Accelerating through

Best estimate
( )// Initial State

\ 4

machine learning

~ 400 TB
(100 samples,
1 time level)

Simulation | . 3 pg

(1000 samples,
7 time levels)

/éimulated Stat;/

netCDF/MP|/inMemory Data-driven

Process-driven

ensemble: PDF fields Model statistics

(in-situ processing)

Machine learning
pattern recognition
smoothing (Kernel-

- S1m-to-Obs I 2 based)
DA . '
conversion| 2 Observations /

A

Access, data-logistics

~1PB
(1000 samples) ! Atmosphere, Clouds, aerosols Machine |earning
I Chemistry

. . I Ocean (temperature, salinity,
—Sim-minus-Ob hydrographic profiles)
Phased Array Weather Radar
L y
——————————————— Extreme events trajectories

Broad-sense DA

optimisation

adapted from Miyoshi et al



Machine learning - Data driven Earth Science

Analytical
task

Scientific task

Conventional
approaches

Classification and anomaly detection

Regression

Finding extreme
weather
patterns

Land-use and
change
detection

Predict fluxes
from
atmospheric
conditions

Predict
vegetation
properties from
atmospheric
conditions

Predict river
runoff in
ungauged
catchments

State prediction

Precipitation
nowcasting

Downscaling
and bias-
correcting
forecasts

Seasonal
forecasts

Transport
modelling

Multivariate,
threshold-based
detection

Pixel-by-pixel spectral
classification

Random forests, kernel
methods, feedforward
neural networks

Semi-empirical
algorithms
(temperature sums,
water deficits)

Process models or
statistical models with
hand-designed
topographic featu resdt

Physical modelling
with data assimilation

Dynamic modelling
and statistical
approaches

Physical modelling
with initial conditions
from data

Limitations of
conventional
approaches

Heuristic approach,
ad hoc criteria used

Shallow spatial
context used, or
none

Memory and lag
effects not
considered

Prescriptive in
terms of functional
forms and dynamic
assumptions

Consideration of
spatial context
limited to hand-
designed features

Computational
limits due to
resolution, data
used only to update
states

Computational
limits, subjective
feature selection

Fully dependent on
physical model,
current skill
relatively weak

Emergent or potential
approaches

Supervised and semi-
supervised
convolutional neural
networks*42

Convolutional neural
networks*?

Recurrent neural
networks, long-short-
term-memories
(LSTMS)89,99,100

Recurrent neural
networks®, possibly
with spatial context

Combination of
convolutional neural
network with recurrent
networks

Convolutional-LSTM
nets short-range spatial
context??

Convolutional nets’?,
conditional generative
adversarial networks
(CGANS)53,93,101

Convolutional-LSTM
nets with long-range
spatial context

Physical modelling of
transport

Fully dependent on
physical model,
computational
limits

Hybrid physical-
convolutional network
models®8:24

High-quality segmentation results produced by deep learning on climate
datasets.

Reichstein et al, 2019


https://bit.ly/2X42Vur

ML & physical modelling

Machine learning tasks Earth science tasks

a Object classification and localization Pattern classification

Cat: 0.982,'

b Super-resolution and fusion Statistical downscaling and blending
P | ammt P Y a- é
8x8 32 x 32 Ground Ny — IR s
input samples truth aay L ) “(‘(l";’ —

Predict future visual
representation

d Language translation Dynamic time series modelling

Er liebte zu essen . Real vs predicted humidity values

Sotfmax @ BN ® W N

Decoder >
Er liebte zu essen Null S :{> g

Encoder -

=T
He loved to eat . ' ' ' ' Time '

Reichstein et al, 2019

s Wk =

 Observations ‘Observations
Parameterization o Parameterization
meta-model 1 meta-model 2

Parameters 1 Parameters 1

12)

Submodel 1 — Output Submodel 1 — Output

H: | ‘l . 4 ’
| ° |
Input Cost Input
E function ; :

Forcing Ground truth ~ Ground truth  Ground truth

Improving parameterisations (global atmospheric modelling)
Physical sub-models -> ML models

Analysis Model-Observation mismatch

Constraining sub-models (from ML)

Surrogate modelling or emulations (ML emulators)

* Interpretability, Physical consistency

e Data complexity, uncertainty and noise

e Limited available labelled data sets

e Extrapolation versus prediction

e Computational cost & time: transfer learning



ML classification of volcanic deformation: INSAR data

e Earth Observation (routinely)
* \/olcanoes in remote regions

© InSAR satellite remote sensing
e High-resolution deformation signal
* Large geographic areas, large coverage
e Strong statistical link to eruption

o Increasingly large data sets
* Sentinel-1 A and B with 6-day repeat cycle
e More than 10-TB/day, 2 PB (2014-2017)
* Challenge manual inspection
e Timely dissemination of information

@ ML & satellite-based volcano geodesy
Automatic detection of deformation patterns
associated to volcanic activity
Classify interferometric fringes in wrapped
interferograms (no atmospheric corrections)
Transfer learning strategy with pre-trained
networks (AlexNet)

Detection of large, rapid deformation signals
in wrapped interferograms
Further developments
* slow- or small-deformation patterns (no
multiple fringes in ST interferograms),
® uncertainties quantification

Anantrasirichai et al. (JGR,2018)

s 30,000 ST mterferograms over 900 volcanoes (201 6-201 7)
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(a) Ground truth

- I

Input 2D Layer (224x224)

Data with Ground truth

ML classification and detection: SAR data

(b) Convert to grayscale

(¢) Overlapping palches

AlexNet convolutional neural network
Transfer learning strategy
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* Training: small archives (Envisat) and data sets
( -1)
* Wrapped interferogram -> grayscale
* Training images divided in overlapping patches
e Edge detection (canny operator: Gaussian filter +
double thresholding)

* Data augmentation (rotations, flips, distortion,
pixels shift): increase number of positive patches

* Transfer learning strategy: fine-tuning of pre-
trained CNN networks (AlexNet)

* Retraining strategy: unconfirmed positive and
negative results

Anantrasirichai et al. (2018)



A

Digital Object Architecture with a spanning

Software Platform of services
* across edge and centralised computing environments
(HPC, Cloud), and Science Data Centres

* Persistent/transient storage (variable data life cycles)
* Batch and streaming execution models

* Containers technology (Kubernetes, Singularity)

* Big Data environment

* Data logistics across streaming workflow stages

e Data logistics and data reduction across these
infrastructures

* Flexible services (storage, compute, communications)

e Rendering services (visualise, analyse)

ayer

Community-driven,

agile and innovative shaping
strategy

Governance structure (multi-partners) and international collaborations

Enabling technologies Sharing Knowledge

Software platform of distributed FAIR services
Digital Object Architecture

Data analytics and workflow management
data logistics

Research data management and stewardship

Workshops, hands-on schools
Multi-disciplinary competence centres &
multiplicators

Shared software and library

Science-driven society services, Citizen science

Centralised Environments (HPC, Cloud)
e Concentrate high-performance and resource
capabilities (storage, compute, communication)
* Multiple research communities
e Convergence between HPC and HDA

*Data reduction (in-situ) a fundamental pattern
*Interoperable execution models (batch, streaming)
*Integrate different programming models and data formats
*Federated software stack with provenance systems
*HPC/HDA workflows including machine learning
*Leveraged HPC libraries for HDA

¢ Collaborative, flexible and resilient environments

Data and compute shared infrastructures

Continuum of federated edge and centralised infrastructures
Storage, compute, network, certified data repositories

Digital Object Architecture and software services

Education
in Data
Science

Simulations
& Methods
development

Data

availability RiTEliEE

access archive

What 1s a Science Data Centre?

Earth System

Funding Agencies

Way to fund science
Way to maximize investment
Way to spur innovation

Place to find-their data
Place to analyze-their data
Place to find support

Observatories
Industry

Place to curate their data
Place to develop new capabilities
Place to support their users
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Place to find new challenges
Place to collaborate with academia
Place to test new technologies

From project-driven to interdisciplinary science



Some Challenges ahead

APPLICATION Mahout, R and Applications Applications and Community Codes
Al/ML in Earth and Universe Sciences ——
.- .[- . i n Mive Pig Sqoop  Flume FORTRAN, C, C++ and IDEs
* Interpretability, adaptability, physical consistency -
! . . ?'3 Map-Reduce Storm ~ Domain-specific Libraries »
* Multi-source uncertainty: complex noisy data S R AT
. . . 2N B ey-value store * choesram' Libraries e.q. PAPI
e Al for HPC: multi scale & multi-physics = £ .
. . e S HOFS Madoop e Syt g Pl Seh ey
ensemble simulations, probabilistic inference £ -
2 o | _
e HPC for HPDA/AI: multi-wavelength, multi- e S
source data, transfer learning limitations
* Increasing ML/DL use: interdisciplinary e fne o Gy | Mo e i

collaboration & mutualised expertise

* FAIR software services and support

HPC and HDA convergence

* Access policy (FAAI) & security

e Data logistics (in-coming, in, out-coming)

e Resources management and execution environments

Analytics

* Persistent/temporary data storage over data lifecycle

e Digital Object Architectures (PiDs, meta data,
registries, resolution system)

e Software and library heritage: evolution and new
architecture adaptation visualization




