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Scientific Discoveries 
• Observation and monitoring  
• HPC Simulations 
• Multi-source data analysis 
• Inversion/assimilation 
• Machine learning & AI  
• Uncertainties & extreme events 

Transversal HPC/HDA challenges 
• Astronomy & Astrophysics 
• Climat, Atmosphere, Ocean 
• Solid Earth Sciences 
• Continental surfaces and interfaces 

Socio-economical applications 
• Climate evolution 
• Natural Hazards & Environmental changes  
• Energetic resources 
• Sustainable environmental goals

CNRS-INSU: Fundamental knowledge to sustainability



Data explosion (rate, volume, diversité): 
• Edge environments:  observation acquisition systems  
• Centralised environments (Cloud and HPC):  large 

ensemble simulations, HDA, data assimilation 

Data flux explosion and diversity
Ubiquity and explosion of data

NenuFAR/SKA

CFHT

Copernicus

ARGO

Swarm mission

New challenges: 
• Acquisition: streaming data processing/reduction/compression -> primary data delivery 
• Data Management: long-term archiving & curation (metadata, provenance, distribution) 
• HDA:  multi-source distributed data statistical analysis, ML 
• HPC:  ensemble of multi-physics and multi-scale simulations, data assimilation, ML 
• Data Distribution: multi-source FAIR data services, virtual observatories

EUCLID

InSight mission

Active volcanos

Seismic/geodesy

Hayabusa2-Mascot module

Calipso

SVOM

Merlin



Big Data Challenges
BigData Challenges 

• Flux rate, volume, diversity 

• Multi-source, multi wavelength 

• Reprocessing and versioning 

• Large ensemble simulations 

• Interdisciplinary and transdisciplinary 

Data Policy and management 
• Open Data by default, FAIR data services 

• Long-term archiving and curation 

• Data veracity, certified repositories 

• Software management and certification 

Statistical challenges 
• Multi-temporal, multi-angular, multi-source 

• Non-linear and non-Gaussian 

• Data and systemic uncertainties,  

• Extreme events 

Machine learning challenges 
• Few supervised information available 

• Computationally intensive and timeliness 

• Consistency, learning and interpretability 

• Multi source uncertainty propagation



Data-intensive astronomy

Exponential 
Growth of 
Data Volumes

Data Intensive Astronomy

• From data poverty to data glut 
• From data sets to data streams 
• From static to dynamic, evolving data 
• From offline to real-time analysis 
• From centralized to distributed resources

…and 
Complexity

User interaction with the data has 
become the bottleneck in research!

• Science increasingly driven by large data sets;  massive multi-source, multi-wavelength data 
• Large interdisciplinary scientific collaboration 
• Science extraction: distributed FAIR data services across instruments (multi-messager) 
• Increasing use of ML/DL: data analysis and HPC simulations



Astronomy and SKA

Cosmic dawn 
(First stars & Galaxies)

Cosmology 
(Dark matter, Large-scale 
structures)

Galaxy evolution 
(gas content & new stars)

Cosmic magnetism 
(origin & evolution)

Fundamental physics 
(gravitational waves & 
compact objects)

Cradle of life 
(Planets, Molecules, SETI)

Era of big surveys 

LSST: 160 MB/s, ~1.3 TB/night ,~ 30 PB over 5 yrs archived data 
LOFAR: ~100 TB/night, ~6-10 PB/yr archived data 
CTA: 3-10 PB/yr archived data  
SKA: 0.1-3 EB/yr archived science-ready data

Modern sky surveys: ~1012 - 1018 bytes images; Catalog: ~108-109 objects (stars, galaxies, etc.)



SKA observatory 
From edge -> centralised infrastructures 
• High-rate data stream logistics

• Stateful network services : caching/buffering

• Edge computing: numerical beam forming of signals ; 

removal of radio-frequency interference  

• Data loss-compression and reduction

• Dynamic stream structures: observation dependent

Centralised HPC/HDA operational infrastructures 
• Storage and computing capabilities/capacities

• High-rate data processing

• Complex HDA workflows (processing & calibration)

Primary data productS (events, images, cubes) 
• Data models (standards, metadata, provenance)

• Archiving and dynamic distribution (data placement)


- > Machine Learning moving to the edge

SKA Regional Centres (SRCs) 
New organisational, operational, business model 
• Community-driven shaping strategy

• Co-designed (SKAO, providers, scientific users)

Scientific software platform 

• Distributed services across shared infrastructures

• Multi providers (Cloud, HPC, Data), Federated AAI

• Application-dependent global resource optimisation

Application workflows 
• Diversity of complex workflows (HDA, HPC, AI)

• Data logistics all along in multi-provider context

• Workflow management and provenance system

Data archiving, curation and reuse 
• Primary and secondary scientific data products

• FAIR multi-source data services (federated)

Scientific Users 
• Key SKA Projects and PI granted observation projects

• Reuse of SKA data products: multi-messenger and 

multi-wavelength approaches

-> HPC/HDA in centralised infrastructures

SKA: community driven BigData pathfinder

Shared with other communities: Space Observation, Earth Systems Observation, HEP

…

SKA 
Regional Centres 

multi-source data analysis, science data products 
data archiving and reuse 

Scientific platform of distributed services  
Data, Computing (HDA, HPC, AI), Archiving

SRC2SRC1 SRC3 SRCn

NREN/International Data Logistics

Existing Shared centralised Infrastructures (HPC, Cloud, AI, Data) 

SKA  
Phase 1 Science Archive 

 600 PB/yr

On Line processing: high-rate data streams

Off Line SRC processing: multi-providers context

SKA KSP, PIs, user community

Edge environments 
data stream logistics, processing,  

compression, reduction

Centralised operational environments 
Data processing, calibration 

primary data products
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SKA  
Regional Centres

SKA  
Observatory

CSPs 
Central Signal Processor

SKA 
Observatory 

Science Users

 SKA      
archive       

user

 Applications  
 using other data 

with SKA data

SKA regional 
centres

• Data flow challenges

600PB

SKA
Phase1 Science Archive

180PB

Uploads to
Facebook

~5 Tb/s

Telescope site

Telescope site



AMA-DEUS: N-Body simulation
HPC grand challenge 

• 550 billion particles 
• 2.5 trillion computing points 
• 50 million CPU hours (> 5700 years) 
• 76 032 cores & 300 Tb memory 
• > 50 Gb/s data throughput (PFS) 
• 1 500 Pbs reduced on fly to 1 500 Tbs

An end-to-end workflow !Challenges 
• dynamic load balancing 
• smart parallel I/O optimisation 
• reduction of raw data (time) -> 

in-situ & post processing 
• physical objects -> on-the-fly 

processing workflow Snapshots ~16 x 16 TB Samples ~40 TB Lightcones ~ 5x10 TBHalos/catalogs ~50 TB

Alimi et al



Observed image 
spectral band 30/40/50

80 spectral bands 
332 * 551 points
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40 000 parameters >> 10 015 200 information

physical 

parameters

Reconstructed image 
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DL: de-noising & analysis hyper-spectral imaging radio astro
Orion-B

Vandame, Chanussot, Pety (2019)

NLCA (noise) - Hybrid NLCA (Physical data)

G0 column density

Pety et al, 2017
IRAM 30 m Telescope

>160 000 images



Climate system: a scientific and societal chalenge

Several complex and multi-physics processes to be 
simulated 
Several interacting processes 
Large range of time scales: from days to months, years, 
decades and millennia

Climate consists of  a continuum  
of  time and space scales - 

 

from days to months, years, decades and millennia  
 
 

 
 

from local to regional, continental and global 

  
 

Large range of space scales: from local to regional, 
continental and global

Climate consists of  a continuum  
of  time and space scales - 

 

from days to months, years, decades and millennia  
 
 

 
 

from local to regional, continental and global 

  
 

Inherently non-linear dynamical Earth systems 
CPU demanding <-> large volume of data

Comprehensive modelling of 
climate systems and variability 

Understanding detection, 
attribution and prediction of 
extreme events and modes of 
climate variability 

Climate science, impacts and 
societal services



Climate simulations and observations

Resolution

Complexity

Duration and ensemble size

Ehanced computing 
resources produce 
MORE DATA

Earth Observations

Earth observations  

Complexity

~ 10 PBs scale
TGCC-Curie, IDRIS-Ada

 Atmosphere LMDZ

Land ORCHIDEE

Chem/Aerosols INCA

 Atmosphere LMDZ

Land ORCHIDEE

Chem/Aerosols INCA

Ocean

Sea-Ice

Biogeochemistry

NEMO

Ocean

Sea-Ice

Biogeochemistry

NEMO

 Oasis

 MCT

 Oasis

 MCT

MPI process MPI process

OpenMP thread

OpenMP Master thread
  

XIOS 

client   
XIOS 

client

  
XIOS 

server   
XIOS 

server

Asynchroneous modeAsynchroneous mode

one output NEMO ocean  le
    

 

  
one output NEMO sea-ice  le

  
 one output atmospheric  le

one output land  le

IPSLCM6 

Modèle Système Terre IPSL

A number of models: configurations (parameterisation), experiences 
(scenarios), ensemble of realisations (uncertainty) 
Large number of variables: large volumes of data and number of files

dB server web server

MongoDB Postgres web api

metrics
garden

jupyter notebook

resources 
consumption

browser

monitor

browser

metrics monitor
resources 

consumption
supervisorfront-end

daemonized message consumers

SMTP Server

TGCC

EMAILS

SMTP Server

IDRIS

EMAILS

SMTP Server

CINES

EMAILS

SMTP Server

CICLAD

EMAILS

pulls, extracts, validates, formats, dispatches

AMPQ MESSAGES

TCP/IP HTTPS - WSS

Développement d'un bus de communication

IPSL

fallback 
procedure

Aujourd'hui :
● 100 utilisateurs
● qqs 10 job/jour

Flexible provenance-driven system 

• Provides run-time feedback with tuneable metadata 
and provenance-driven controlled data movement 
✴ Avoids useless waits for long and unfruitful runs 
✴ Fosters dynamic steering, diagnostics (saving 

computing cycles, storage and energy!)



Numerical laboratory: Earth System Grid Federation

ESGF Test Infrastructure based on virtual machines ESGF Test Suite

  Python Nose - Test Framework 
  Python Requests - HTTP Support
  Python Subprocess - System Execu�on 
  Python Selenium - Browser Simula�on
  Python Mul�processing - Parallelisa�on

Test and Valida�on PlaTorm at IPSL

Con�nuous Build PlaTorm at IPSL

Member of the Interna�onal Climate Networking Group

Distribution des données

Passage à 10 Gb/s grâce au financement du projet 

ESGF : Earth System Grid Federation

• Access to models, simulations and observations 
• Share data analytic methods and tools 
• Advanced management  and documentation of models, 

simulations (indexation, metadata, provenance) 
• Induction of a broad research and user community 
• Data analysis platforms and web services 
• Pervasive provenance system

Climate Model Assessment Framework (CLiMAF)

~ PBs scale

ESGF Test Infrastructure based on virtual machines ESGF Test Suite

  Python Nose - Test Framework 
  Python Requests - HTTP Support
  Python Subprocess - System Execu�on 
  Python Selenium - Browser Simula�on
  Python Mul�processing - Parallelisa�on

Test and Valida�on PlaTorm at IPSL

Con�nuous Build PlaTorm at IPSL

Member of the Interna�onal Climate Networking Group

Distribution des données

Passage à 10 Gb/s grâce au financement du projet 

ESGF : Earth System Grid Federation

International Climate Networking Group

from S. Denvil

         Malleefowl

Iden'ty 

providers

Data sources

ESGF

Thredds

Local replicas 

CMIP5, 

obs4MIPS… 

OpenID

OAuth

LDAP

Access to 

local IPSL replicas

WorkMow engine

Phoenix

PyCSW Catalog Service

Pyramid

Web GUI

Celery (scheduler)

PyWPS

execute Register 

service

Birdy execute

ESGF search

WPS permet de réaliser des traitements 

de données sur le serveur de données 

sans télécharger d'énormes volumes de 

données

Architecture à l'IPSL : 
• Malleefowl :   accès aux données, 

traitement du workEow...

• Flyingpigeon: indices clima�ques

• Hummingbird: fonc�ons de base 

(moyenne d'ensemble, regrillage etc.)

• Birdy: instruc�ons en ligne de 

commande pour exécuter de façon 

distante le WPS

• Esmvalwps: pour exécuter les 

diagnosiques ESMValTool à distance

Esmvalwps

Hummingbird

Flyingpigeon

Web Processing Service (WPS)Web processing services (WPS)



Observation: in situ (land/sea), air and space

Cloud, aerosol, extreme weather radar 
• Ground and satellite cloud observations  
• Identify atmospheric instability (convective, baroclinic) 
• Monitor various data (e.g. temperature, pressure, humidity) 
• Track precipitable water (weather radar) and extreme 

phenomena (e.g. storm, cyclones) 
• Machine learning, Deep learning

Ocean satellite and in situ Argo observation analysis 
• Large amount of 4D in-situ data (3D space + time) 
• Non stationary (mean and covariance) and non Gaussian 
• Combined with satellite SSH and mooring data 
• Spatial-temporal modelling (adding vertical dimension) 
• Machine learning, Deep learning

Cyclones

Storms

Ocean/Argo



Data assimilation: numerical weather prediction
THE$CHALLENGE$OF$THE$NEXT$DECADE$IN$NUMERICAL$COSMOLOGY.$
CRITICAL$POINTS$IN$BIG$DATA$AND$EXTREME7SCALE$COMPUTING!

JEAN7MICHEL$ALIMI$$
LUTH,$OBSERVATOIRE$DE$PARIS,$FRANCE$

DEUS$CONSORTIUM$(WWW.DEUS7CONSORTIUM.ORG)!

• Evolu'on!of!N+Body!Cosmological!simula'ons!on!the!1st!Rank!of!top500!
• White!Paper:!The!challenges!of!the!next!decade!in!numerical!cosmology.!!
• Comments!on!the!survey!by!BDEC!organizers!

Outline:!!

Charleston!!SC,!2013!

Global Observing System

Surface station

Weather balloon

Aircraft

Satellite

Ship

Buoy

Radar

Multi-source and multi-scale data
From edge: streaming data processing and reduction 
                 to centralised infrastructures (HPC, Cloud): 
large ensemble simulations & Bayesian inference

• Data assimilation is equivalent to a machine learning problem (Abarbanel et al (2018), Bocquet et al (2018) 
• Artificial Intelligence: a natural framework to take up challenges of Earth Observation and Modelling 

We consider the evolution of PDF
Obs
.Analysis ensemble mean
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An approximation to KF with 
ensemble representations

Analysis ensemble mean
Multi-source observations

Multi-source uncertainties FCST ensemble mean 
Particle filters

Approximation to KF with  
ensemble representations 
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T. Miyoshi, Riken aics
30 minutes forecasting

Le Dimet and Talagrand (1986) 
Carrasi et al (2018)

From ECMWF



ML accelerated workflow, data logisticsFlow chart of DA

Simulation

DA

Initial State

Simulated State

Observations

(Best estimate)

PDF represented by an ensemble

Sim-to-Obs
conversion

Sim-minus-Obs

Broad-sense DA

ensemble: PDF fields

~ 400 TB 
(100 samples, 
1 time level)

~ 3 PB 
(1000 samples, 
7 time levels)

~ 1 TB

~ 1 PB 
(1000 samples)

Data-driven 

Process-driven 
Accelerating through 

machine learning

Model statistics 
(in-situ processing)

Machine learning 
pattern recognition 
smoothing (Kernel-

based)

Machine learning 
optimisation

Access, data-logistics

adapted from Miyoshi et al

netCDF/MPI/inMemory

Atmosphere, Clouds, aerosols 
Chemistry 
Ocean (temperature, salinity, 
hydrographic profiles)) 
Phased Array Weather Radar 
Extreme events trajectories



Machine learning - Data driven Earth Science

Table	1	Conventional	approaches	and	deep
learning	approaches	to	geoscientific	tasks

From:	Deep	learning	and	process	understanding	for	data-driven	Earth	system	science

Nature

ISSN	1476-4687	(online)

Back	to	article	page

Deep-Learning Methods to Understand Weather Patterns (LBL), 
2018 Gordon Bell Prize (https://bit.ly/2X42Vur)

Reichstein et al, 2019

https://bit.ly/2X42Vur


ML & physical modelling

Convolutional neural network

1. Improving parameterisations (global atmospheric modelling) 
2. Physical sub-models -> ML models 
3. Analysis Model-Observation mismatch 
4. Constraining sub-models (from ML) 
5. Surrogate modelling or emulations (ML emulators)

• Interpretability, Physical consistency 
• Data complexity, uncertainty and noise 
• Limited available labelled data sets 
• Extrapolation versus prediction 
• Computational cost & time: transfer learningReichstein et al, 2019



ML classification of volcanic deformation: InSAR data

Data distribution

Sentinel-1

Tambora (Indonesia)

Anantrasirichai et al. (JGR,2018)

Earth Observation (routinely) 
• Volcanoes in remote regions 

InSAR satellite remote sensing 
• High-resolution deformation signal  
• Large geographic areas, large coverage 
• Strong statistical link to eruption 

Increasingly large data sets 
• Sentinel-1 A and B with 6-day repeat cycle 
• More than 10-TB/day, 2 PB (2014-2017) 
• Challenge manual inspection  
• Timely dissemination of information 

ML & satellite-based volcano geodesy 
Automatic detection of deformation patterns 
associated to volcanic activity 
Classify interferometric fringes in wrapped 
interferograms (no atmospheric corrections) 
Transfer learning strategy with pre-trained 
networks (AlexNet) 
Detection of large, rapid deformation signals 
in wrapped interferograms 
Further developments  

• slow- or small-deformation patterns (no 
multiple fringes in ST interferograms), 

• uncertainties quantification

> 30,000 ST interferograms over 900 volcanoes (2016-2017)

temperate, tropical & arid environments 
from steep volcanoes to large caldera

Temporal baseline

Journal of Geophysical Research: Solid Earth 10.1029/2018JB015911

Figure 4. (a–c) Volcanic ground deformation signals in Sentinel-1 inteferograms at (a) Erta Ale (20170104-20170209; Xu
et al., 2017), (b) Etna (20161003-20161015), and (c) Etna (20161003-20161021). (d–f ) Atmospheric signals at (d) Erta Ale
(20170925-20171031), (e) Etna (20170916-20171010), and (f ) Etna (20170916-20170928) . Each color cycle (fringe)
represents 2.8 cm of displacement in the satellite line-of-sight.

or by applying statistical approaches to phase-elevation correlations or time series (e.g., Bekaert et al., 2015;
Jolivet et al., 2014; Z. Li et al., 2005). The quality of atmospheric correction is highly dependent on geographical
location and is hence variable (Parker et al., 2015a). Furthermore, atmospheric corrections can only be applied
to unwrapped interferograms, and unwrapping is computationally expensive and slow and can introduce
phase errors. For our initial, proof-of-concept study, we chose to use wrapped, uncorrected interferograms
and test the ability of our approach to discriminate between deformation and atmospheric signals.

To provide ground-truth information for training and verification of supervised classification systems, it is
necessary to manually identify a selection of interferograms where several fringes can be attributed to vol-
canic deformation. Even though there are >30,000 interferograms in our Sentinel-1 data set, the majority are
short-duration inteferograms covering volcanoes that are not deforming or are deforming slowly. Identifying
a sufficient number of positive images in the Sentinel-1 data set is challenging, so we pretrain the network
using an older archive of interferograms from the European Space Agency’s Envisat satellite. Several possible
data sets exist, including over the Main Ethiopian Rift (Biggs et al., 2011), the Kenyan Rift (Biggs et al., 2009), the
Central Andes (Pritchard & Simons, 2004a), and the Southern Andes (Pritchard & Simons, 2004b). All of these
contain (1) multiple volcanic systems displaying persistent deformation at variable rates and (2) areas which
are not deforming but show a range of features including incoherence and atmospheric artifacts (Figure 3).
We chose to use a data set over the Main Ethiopian Rift for convenience. The Envisat background mission
(2003–2010) acquired three to four images per year over the Main Ethiopian Rift and has been used to iden-
tify deformation at four volcanoes previously considered dormant: Alutu, Corbetti, Bora, and Haledebi (Biggs
et al., 2011). These interferograms are a good test case. The rates of deformation are several centimeters per
year, which means that over the time period of the interofergrams (variable but typically several months), the
interferograms show several fringes of deformation.

Despite the small number of examples, it is important to train the network using some Sentinel-1 data to
account for differences in processing strategy and atmospheric behavior. A small dyke intrusion at Erte Ale
volcano (Ethiopia) occurred in January 2017 associated with the overflow of the lava lake (Xu et al., 2017), and
interferograms spanning this event shows four fringes of deformation (Figure 4a). Interferograms of Etna vol-

ANANTRASIRICHAI ET AL. 6596

Volcanic ground deformation Sentinel-1 interferograms

Erta Ale  
(January 2017)

Etna  
(October 2016)

Etna  
(October 2016)

Atmospheric signals



ML classification and detection: SAR data

AlexNet convolutional neural network 
Transfer learning strategy

Tambora (Indonesia)

Anantrasirichai et al. (2018)

Alayta Adwa 

Adwa(Ethiopia Etna (Italy)

• Training: small archives (Envisat) and data sets 
(Sentinel-1) 
• Wrapped interferogram -> grayscale 
• Training images divided in overlapping patches 
• Edge detection (canny operator: Gaussian filter + 

double thresholding) 

• Data augmentation (rotations, flips, distortion, 
pixels shift): increase number of positive patches 

• Transfer learning strategy: fine-tuning of pre-
trained CNN networks (AlexNet) 

• Retraining strategy: unconfirmed positive and 
negative results



A Digital Object Architecture with a spanning Layer
Software Platform of services  
• across edge and centralised computing environments 

(HPC, Cloud), and Science Data Centres 
✴ Persistent/transient storage (variable data life cycles) 
✴ Batch and streaming execution models 
✴ Containers technology (Kubernetes, Singularity)  
✴ Big Data environment 
✴ Data logistics across streaming workflow stages 

• Data logistics and data reduction across these 
infrastructures 

• Flexible services (storage, compute, communications)  
• Rendering services (visualise, analyse) 

Centralised Environments (HPC, Cloud) 
• Concentrate high-performance and resource 

capabilities (storage, compute, communication) 
• Multiple research communities 
• Convergence between HPC and HDA 

✴Data reduction (in-situ) a fundamental pattern 
✴Interoperable execution models (batch, streaming) 
✴Integrate different programming models and data formats 
✴Federated software stack with provenance systems 
✴HPC/HDA workflows including machine learning 
✴Leveraged HPC libraries for HDA  

• Collaborative, flexible and resilient environments

Earth System 

Science 
Data 

Centre

€

Science 
Data 

Centre

Funding Agencies

What is a Science Data Centre?
Astronomers

Place to find their data
Place to analyze their data
Place to find support

Observatories

Place to curate their data
Place to develop new capabilities
Place to support their users

Industry

Way to fund science
Way to maximize investment
Way to spur innovation

Place to find new challenges
Place to collaborate with academia
Place to test new technologies
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¾ Data availability: 
All researchers of the individual experiments or 
facilities require quick and easy access to the   
relevant data.
¾ Analysis: 
Fast access to the generally distributed data from 
measurements and simulations is required. 
Corresponding computing capacities should also     
be available.
¾ Simulations and methods development: 
The researchers need an environment for the 
production of relevant simulations and the 
development of new methods (machine learning).

¾ Open access: 
More and more it is necessary to make the scientific 
data available not only to the internal research 
community, but also to the interested public: public 
data for public money!
¾ Education in data science: 
Not only data analysis itself, but also the efficient use 
of central data and computing infrastructures requires 
special training. 
¾ Data archive: 
The valuable scientific data and metadata must be 
preserved and remain interpretable for later use (data 
preservation).

Data 
availability

Simulations
& Methods 

development
Analysis

Data 
archive

Open 
access

Analysis and Data Center in Astroparticle Physics

Education
in Data 
Science

From project-driven to interdisciplinary science

Digital Object Architecture and software services



Some Challenges ahead

HPC and HDA convergence 
• Access policy (FAAI) & security 
• Data logistics (in-coming, in, out-coming) 
• Resources management and execution environments 
• Persistent/temporary data storage over data lifecycle 
• Digital Object Architectures (PiDs, meta data, 

registries, resolution system) 
• Software and library heritage: evolution and new 

architecture adaptation

DRAFTEthernet
Switches

Local Node
Storage 

X86 Racks +
GPUs or

Accelerators 

In-situ
Processing

Infiniband +
Ethernet
Swtiches

SAN + Local
Node

Storage 

Commodity X86
Racks 

Lustre (Parallel
File System)

Batch Scheduler
(e.g., SLURM) HDFS (Hadoop File System)

System
Monitoring

Tools 

Applications and Community Codes

Hbase BigTable
(key-value store)

AVRO

Sci. Vis.

Zookeeper (coordination)

Map-Reduce Storm

Hive Pig Sqoop Flume

Mahout, R and Applications

Domain-specific Libraries

FORTRAN, C, C++ and IDEs

Cloud Services (e.g., AW
S)) Virtual Machines and Cloud Services

Containers (Kubernetes, Docker, etc.)
Containers 

(Singularity, Shifter, etc.)

DATA ANALYTICS ECOSYSTEM COMPUTATIONAL SCIENCE ECOSYSTEM

MPI/OpenMP
+Accelerator

Tools

Numerical
Libraries

Performance &
Debugging
(e.g., PAPI)
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Unified Data flow with Data Broker

Files I/O
§ Longer latency
§ Less granularity
Sockets
§ Longer latency
§ Multiple sockets per application
§ Discovery for new apps is complicated

Data Broker
§ Shared storage framework for data and 

message exchange
§ Simple API to access persistent or volatile 

storage through distributed tuple-based 
global namespaces

§ Data Broker can be accelerated via H/W 
support

§ Discovery of apps via Data Broker

vs.

Modeling and 
Simulation

Analytics

Visualization

ML/DL

Filesystem

Data Broker

KV namespace

KV namespace

KV namespace

KV namespace

app app app

https://github.com/IBM/data-broker

Modeling and 
Simulation

Analytics

Visualization

ML/DL Data 
Broker

on-prem

public cloud,
devices

gRPC

Multi 
source data

AI/ML in Earth and Universe Sciences 
• Interpretability, adaptability, physical consistency 
• Multi-source uncertainty: complex noisy data  
• AI for HPC: multi scale & multi-physics 

ensemble simulations, probabilistic inference 
• HPC for HPDA/AI: multi-wavelength, multi-

source data, transfer learning limitations 
• Increasing ML/DL use: interdisciplinary 

collaboration & mutualised expertise 
• FAIR software services and support


