

HPC/HDA: Multi-source Data Analysis and Data assimilationChallenges in Earth Systems and Universe Sciences

Jean-Pierre Vilotte

Scientific Deputy (DS) Intensive Computing and Data, Institut des Sciences de l'Univers (INSU), CNRS (France) Institut de Physique du Globe de Paris

French-German-Japanese workshop HPC/HDA convergence Tokyo, 6-8 November 2019

CNRS-INSU: Fundamental knowledge to sustainability

Scientific Discoveries

- Observation and monitoring
- HPC Simulations
- Multi-source data analysis
- Inversion/assimilation
- Machine learning & Al
- Uncertainties & extreme events

Transversal HPC/HDA challenges

- Astronomy & Astrophysics
- Climat, Atmosphere, Ocean
- Solid Earth Sciences
- Continental surfaces and interfaces

Socio-economical applications

- Climate evolution
- Natural Hazards & Environmental changes
- Energetic resources
- Sustainable environmental goals

Data flux explosion and diversity

ARGO

Ubiquity and explosion of data

Swarm mission

Seismic/geodesy

Hayabusa2-Mascot module

Copernicus ¹

Calipso

Data explosion (rate, volume, diversité):

- Edge environments: observation acquisition systems
- **Centralised environments (**Cloud and HPC): large ensemble simulations, HDA, data assimilation

New challenges:

- Acquisition: streaming data processing/reduction/compression -> primary data delivery
- Data Management: long-term archiving & curation (metadata, provenance, distribution)
- HDA: multi-source distributed data statistical analysis, ML
- HPC: ensemble of multi-physics and multi-scale simulations, data assimilation, ML
- Data Distribution: multi-source FAIR data services, virtual observatories

Big Data Challenges

BigData Challenges

- Flux rate, volume, diversity
- Multi-source, multi wavelength
- Reprocessing and versioning
- Large ensemble simulations
- Interdisciplinary and transdisciplinary

Data Policy and management

- Open Data by default, FAIR data services
- Long-term archiving and curation
- Data veracity, certified repositories
- Software management and certification

Statistical challenges

- Multi-temporal, multi-angular, multi-source
- Non-linear and non-Gaussian
- Data and systemic uncertainties,
- Extreme events

Machine learning challenges

- Few supervised information available
- Computationally intensive and timeliness
- Consistency, learning and interpretability
- Multi source uncertainty propagation

Data-intensive astronomy

Data Intensive Astronomy

Exponential Growth of Data Volumes

...and Complexity

User interaction with the data has become the bottleneck in research!

- From data poverty to data glut
- From data sets to data streams
- From static to dynamic, evolving data
- From offline to real-time analysis
- From centralized to distributed resources
- Science increasingly driven by large data sets; massive multi-source, multi-wavelength data
- Large interdisciplinary scientific collaboration
- Science extraction: distributed FAIR data services across instruments (multi-messager)
- Increasing use of ML/DL: data analysis and HPC simulations

Astronomy and SKA

Era of big surveys

LSST: 160 MB/s, ~1.3 TB/night ,~ 30 PB over 5 yrs archived data LOFAR: ~100 TB/night, ~6-10 PB/yr archived data CTA: 3-10 PB/yr archived data SKA: 0.1-3 EB/yr archived science-ready data

Cosmic dawn (First stars & Galaxies)

Cosmology (Dark matter, Large-scale structures)

Galaxy evolution (gas content & new stars)

Cosmic magnetism (origin & evolution)

Fundamental physics

(gravitational waves & compact objects)

Cradle of life (Planets, Molecules, SETI)

Z=28.62

SKA: community driven BiaData pathfinder

Off Line SRC processing: multi-providers context

Existing Shared centralised Infrastructures (HPC, Cloud, AI, Data)

SKA observatory

From edge -> centralised infrastructures

- High-rate data stream logistics
- Stateful network services : caching/buffering
- Edge computing: numerical beam forming of signals ; removal of radio-frequency interference
- Data loss-compression and reduction
- Dynamic stream structures: observation dependent

Centralised HPC/HDA operational infrastructures

- Storage and computing capabilities/capacities
- High-rate data processing
- Complex HDA workflows (processing & calibration)

Primary data productS (events, images, cubes)

- Data models (standards, metadata, provenance)
- Archiving and dynamic distribution (data placement)
 - > Machine Learning moving to the edge

SKA Regional Centres (SRCs)

New organisational, operational, business model

- Community-driven shaping strategy
- Co-designed (SKAO, providers, scientific users)

Scientific software platform

- Distributed services across shared infrastructures
- Multi providers (Cloud, HPC, Data), Federated AAI
- Application-dependent global resource optimisation

Application workflows

- Diversity of complex workflows (HDA, HPC, AI)
- Data logistics all along in multi-provider context
- Workflow management and provenance system

Data archiving, curation and reuse

- Primary and secondary scientific data products
- FAIR multi-source data services (federated)

Scientific Users

- Key SKA Projects and PI granted observation projects
- Reuse of SKA data products: multi-messenger and multi-wavelength approaches
 - -> HPC/HDA in centralised infrastructures

Shared with other communities: Space Observation, Earth Systems Observation, HEP

AMA-DEUS: N-Body simulation

HPC grand challenge

- 550 billion particles
- 2.5 trillion computing points
- 50 million CPU hours (> 5700 years)
- 76 032 cores & 300 Tb memory
- > 50 Gb/s data throughput (PFS)
- 1 500 Pbs reduced on fly to 1 500 Tbs

Alimi et al

Challenges

- dynamic load balancing
- smart parallel I/O optimisation
- reduction of raw data (time) -> in-situ & post processing
- physical objects -> on-the-fly processing workflow

Snapshots ~16 x 16 TB Samples ~40 TB

Halos/catalogs ~50 TB

Lightcones ~ 5x10 TB

DL: de-noising & analysis hyper-spectral imaging radio astro

Climate system: a scientific and societal chalenge

- Several complex and multi-physics processes to be simulated
- Several interacting processes

Large range of time scales: from days to months, years, decades and millennia

Large range of space scales: from local to regional, continental and global

Inherently non-linear dynamical Earth systems CPU demanding <-> large volume of data

Comprehensive modelling of climate systems and variability

Understanding detection, attribution and prediction of extreme events and modes of climate variability

Climate science, impacts and societal services

Climate simulations and observations

IPSLCM6

Modèle Système Terre IPSL

XIOS XIOS Atmosphere LMDZ

Land ORCHIDE

Oasis MCT

Detection

attribution

Region

Land use

climatel extremes

A number of models: configurations (parameterisation), experiences (scenarios), ensemble of realisations (uncertainty) Large number of variables: large volumes of data and number of files

Flexible provenance-driven system

TGCC-Curie IDRIS-Ada

- Provides run-time feedback with tuneable metadata and provenance-driven controlled data movement
 - * Avoids useless waits for long and unfruitful runs
 - * Fosters dynamic steering, diagnostics (saving computing cycles, storage and energy!)

Numerical laboratory: Earth System Grid Federation

Web processing services (WPS)

Climate Model Assessment Framework (CLiMAF)

- Access to models, simulations and observations
- Share data analytic methods and tools
- Advanced management and documentation of models, simulations (indexation, metadata, provenance)
- Induction of a broad research and user community
- Data analysis platforms and web services
- Pervasive provenance system

Observation: in situ (land/sea), air and space

Cyclones

Storms

Cloud, aerosol, extreme weather radar

- Ground and satellite cloud observations
- Identify atmospheric instability (convective, baroclinic)
- Monitor various data (e.g. temperature, pressure, humidity)
- Track precipitable water (weather radar) and extreme phenomena (e.g. storm, cyclones)
- Machine learning, Deep learning

Ocean satellite and in situ Argo observation analysis

- Large amount of 4D in-situ data (3D space + time)
- Non stationary (mean and covariance) and non Gaussian
- Combined with satellite SSH and mooring data
- Spatial-temporal modelling (adding vertical dimension)
- Machine learning, Deep learning

Ocean/Argo

Data assimilation: numerical weather prediction

- Data assimilation is equivalent to a machine learning problem (Abarbanel et al (2018), Bocquet et al (2018)
- Artificial Intelligence: a natural framework to take up challenges of Earth Observation and Modelling

ML accelerated workflow, data logistics

adapted from Miyoshi et al

Machine learning - Data driven Earth Science

Analytical task	Scientific task	Conventional approaches	cor	nitations of oventional proaches		gent or potential oaches	
Classificati	on and anomaly d	etection			1		
	Finding extreme weather patterns	Multivariate, threshold-based detection		uristic approach, hoc criteria used	super convo	rvised and semi- rvised olutional neural orks ^{41,42}	
	Land-use and change detection	Pixel-by-pixel spectral classification		allow spatial itext used, or ie		olutional neural orks ⁴³	
Regression					1		
	Predict fluxes from atmospheric conditions	Random forests, kernel methods, feedforward neural networks	effe	mory and lag ects not isidered	netw term-	Recurrent neural networks, long-short- term-memories (LSTMs) ^{89,99,100}	
	Predict vegetation properties from atmospheric conditions	Semi-empirical algorithms (temperature sums, water deficits)	ter for	scriptive in ms of functional ms and dynamic umptions	netw	Recurrent neural networks ⁹⁰ , possibly with spatial context	
	Predict river runoff in ungauged catchments	Process models or statistical models with hand-designed topographic features ⁹¹	spa lim	nsideration of tial context ited to hand- igned features	Combination of convolutional neural network with recurrent networks		
State predi	ction						
	Precipitation nowcasting	Physical modelling with data assimilation	lim res	mputational its due to olution, data ed only to update tes	nets s	Convolutional–LSTM nets short-range spatial context ⁹²	
	Downscaling and bias- correcting forecasts	Dynamic modelling and statistical approaches	lim	mputational its, subjective ture selection	Convolutional nets ⁷² , conditional generative adversarial networks (cGANs) ^{53,93,101}		
	Seasonal forecasts	Physical modelling with initial conditions from data	phy cur	ly dependent on vsical model, rent skill atively weak	Convolutional–LSTM nets with long-range spatial context		
	Transport modelling	Physical modelling of transport	of	Fully depender physical model computational limits		Hybrid physical- convolutional n models ^{68,94}	

High-quality segmentation results produced by deep learning on climate datasets.

Deep-Learning Methods to Understand Weather Patterns (LBL), 2018 Gordon Bell Prize (<u>https://bit.ly/2X42Vur</u>)

ML & physical modelling

- 1. Improving parameterisations (global atmospheric modelling)
- 2. Physical sub-models -> ML models
- 3. Analysis Model-Observation mismatch
- 4. Constraining sub-models (from ML)
- 5. Surrogate modelling or emulations (ML emulators)
 - Interpretability, Physical consistency
 - Data complexity, uncertainty and noise
 - Limited available labelled data sets
 - Extrapolation versus prediction
 - Computational cost & time: transfer learning

ML classification of volcanic deformation: InSAR data

- Earth Observation (routinely)
 - Volcanoes in remote regions

InSAR satellite remote sensing

- High-resolution deformation signal
- Large geographic areas, large coverage
- Strong statistical link to eruption

Increasingly large data sets

- Sentinel-1 A and B with 6-day repeat cycle
- More than 10-TB/day, 2 PB (2014-2017)
- Challenge manual inspection
- Timely dissemination of information

ML & satellite-based volcano geodesy

Automatic detection of deformation patterns associated to volcanic activity
Classify interferometric fringes in wrapped interferograms (no atmospheric corrections)
Transfer learning strategy with pre-trained

networks (AlexNet)

- **Detection** of large, rapid deformation signals in wrapped interferograms
- Further developments
 - *slow- or small-deformation* patterns (no multiple fringes in ST interferograms),
 - uncertainties quantification

Volcanic ground deformation Sentinel-1 interferograms

ML classification and detection: SAR data

A Digital Object Architecture with a spanning Layer

Software Platform of services

- across edge and centralised computing environments (HPC, Cloud), and Science Data Centres
 - * Persistent/transient storage (variable data life cycles)
 - * Batch and streaming execution models
 - * Containers technology (Kubernetes, Singularity)
 - * Big Data environment
 - \ast Data logistics across streaming workflow stages
- Data logistics and data reduction across these infrastructures
- Flexible services (storage, compute, communications)
- Rendering services (visualise, analyse)

Centralised Environments (HPC, Cloud)

- Concentrate high-performance and resource capabilities (storage, compute, communication)
- Multiple research communities
- Convergence between HPC and HDA
 *Data reduction (in-situ) a fundamental pattern
 *Interoperable execution models (batch, streaming)
 *Integrate different programming models and data formats
 *Federated software stack with provenance systems
 *HPC/HDA workflows including machine learning
 *Leveraged HPC libraries for HDA
- Collaborative, flexible and resilient environments

What is a Science Data Centre?

From project-driven to interdisciplinary science

Some Challenges ahead

AI/ML in Earth and Universe Sciences

- Interpretability, adaptability, physical consistency
- Multi-source uncertainty: complex noisy data
- Al for HPC: multi scale & multi-physics ensemble simulations, probabilistic inference
- HPC for HPDA/AI: multi-wavelength, multisource data, transfer learning limitations
- Increasing ML/DL use: interdisciplinary collaboration & mutualised expertise
- FAIR software services and support

HPC and HDA convergence

- Access policy (FAAI) & security
- Data logistics (in-coming, in, out-coming)
- Resources management and execution environments
- Persistent/temporary data storage over data lifecycle
- **Digital Object Architectures** (PiDs, meta data, registries, resolution system)
- **Software and library heritage**: evolution and new architecture adaptation

