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@ Science of Computing by Computing for Computing domestis anoversess AN

RIKEN = e
universities and research

R-CCS institutes including other

research centersin
International core research center in the RIKEN
science of high performance computing
(HPC)

Science for computing

Alliance with other scientific disciplines that
contribute to the evolution of HPC
Development of new electronic devices - and new materials to
make them a reality - to enable new concepts of computing,

such as photonic, neuromorphic, qguantum, and
reconfigurable devices

Acceleration of
computation utilizing new
computing technologies

New computer
architectures and
computational models

Analysis and
simulation to develop
new computing technologies

New algorithms
and programing
models for new devices

Synergies and

Science of computing Integration Science by computing

Research utilizing HPC to address issues in basic
science and of public concern

Research utilizing analysis and simulation with high resolution and high
fidelity in life sciences, engineering, climate and environment, disaster
prediction and prevention, material sciences, space and particle
physics, and social sciences
Development of machine learning applications
for the coming Society 5.0

Foundational research on computing technologies
essential for HPC

Development of new computing technologies, architectures, and
algorithms toward the “post-Moore” era
Research on programing methods, software, and
operational technologies
Development of methodologies to handle big
data and Al

Fostering of human : .
resources in computational Alliances with industry

science
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Challenges Ahead for R-CCS

e 1. Launching, Operating, and Improving ‘Fugaku’ — the first ‘Exascale’
Supercomputer for Simulation, Big Data and Al

o 2. Extreme improvements in convergence of HPC for Al
* Improving processor performance for inference & training
« Extreme data parallelism for extreme scaling
 Incorporating model parallelism for performance and ultra large neural
networks
... and Al for HPC (challenges in apps & algorthms)

e 3. Big data with IoT and HPC convergence --- how to process data
WITHOUT moving or storing them
* Not just traditional compression, filtering...

e 4. Post-Moore computing towards 2030s --- sustainable future for HPC,
Big Data, and Al (and Fugaku-Next)

on
RCCS



16 Challenges Ahead for R-CCS om

6q Launching, Operating, and Improving ‘Fugaku’ — the first ‘Exascale’
«o‘éﬁ:percomputer for Simulation, Big Data and Al

e 2. Extreme improvements in convergence of HPC for Al
* Improving processor performance for inference & training
« Extreme data parallelism for extreme scaling
 Incorporating model parallelism for performance and ultra large neural
networks beyond 10s GByte
.. and Al for HPC (challenges in apps & algorthms)
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e 3. Big data with IoT and HPC convergence --- how to process data
WITHOUT moving or storing them
* Not just traditional compression, filtering...

e 4. Post-Moore computing towards 2030s --- sustainable future for HPC,
Big Data, and Al (and Fugaku-Next)
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The ‘Fugaku’ Supercomputer, Successor to the K-
Computer
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Broad Base --- Applicability & Capacity
Broad Applications: Simulation, Data Science, Al, .

Broad User Bae: Academia, Industry, Cloud Startups
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Arm64fx & Fugaku &£ /Post-K are: S
Rk R-CCS
» Fujitsu-Riken design A64fx ARM v8.2 (SVE), 48/52 core CPU

« HPC Optimized: Extremely high package high memory BW (1TByte/s), on-die Tofu-D
network BW (~400Gbps), high SVE FLOPS (~3Teraflops), various Al support (FP16,
INTS, etc.)

* Gen purpose CPU — Linux, Windows (Word), other SCs/Clouds

« Extremely power efficient — > 10x power/perf efficiency for CFD benchmark over
current mainstream x86 CPU

o Largest and fastest supercomputer to be ever built circa 2020

> 150,000 nodes, superseding LLNL Sequoia

> 150 PetaByte/s memory BW -
Tofu-D 6D Torus NW, 60 Petabps injection BW (10x global IDC traffic) AGLEX"
25~30PB NVMe L1 storage

The first ‘exascale’ machine (not exa64bitflops =>apps perf.)

Acceleration of HPC, Big Data, and Al to extreme scale
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July 2010

RIKEN AICS established

August 2010

HPCI Project start

September 2010

K computer installation starts
First meeting of SDHPC (Post-K)

2010

Next Generation Supercomputer
Project (K Computer) start

April 2012

Post-K Feasibility Study start

3 Arch Teams and 1 Apps Team
June 2012

K computer construction complete
September 2012

K computer production start
November 2012

ACM Gordon bell Award

2011 2013

2012

()
/

End of FY2013 (Mar 2014)
Post-K Feasibility Study Reports

June 2011

#1 on Top 500

November 2011

#1 on Top 500 > 10 Petaflops
ACM Gordon Bell Award
End of FY 2011 (March 2012)
SDHPC Whitepaper

R Brief History of R-CCS towards Fugaku Qn

2014

AICS renamed to RIKEN R-CCS.
Satoshi Matsuoka becomes new
Director

Arm A64fx announce at Hotchips
NEDO 100x processor project start

Post-K Manufacturing approval by
Prime Minister’s CSTI Committee

2019

April 2014

Post-K project start
June 2014

#1 on Granh 500

March 2019

Post-K Manufacturing start

May 2019

Post-K named “Supercomputer Fugaku”
July 2019

Post-Moore Whitepaper start

Aug 2019

K Computer shutdown

Dec 2019

Fugaku installation start (planned)




Co-Design Activities in Fugaku

RII’.E.H
Multiple Activities since 2011
Science by Science of
- 9 Priory@mpusbingigh Concern to Computing |
General Public: Medical/Pharma, ruffrsy
Environment/Disaster, Energy
Manufacturing, ... e ' // A64fx

Select representatives Design Systems with
- from 100s of parameters that consider
erm applications signifying various application
= various computational characteristics
characteristics
o Extremely tight collabrations between the Co-Design apps centers, Riken,
and Fujitsu, etc.

e Chose 9 representative apps as “target application” scenario
e Achieve up to x100 speedup c.f. K-Computer
e Also ease-of-programming, broad SW ecosystem, very low power, ...




AB64FX Leading-edge Si-technology

= TSMC 7nm FinFET & CoWoS

= Broadcom SerDes, HBM 1/0, and
SRAMs

= 8.786 billion transistorg,,f*”’
= 594 signal pins .~

\
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Post-K Activities, ISC19, Frankfurt 10

O
FUJITSU

Copyright 2019 FUJITSU LIMITED
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e an Many-Core ARM CPU...

« 48 compute cores + 2 or 4 assistant (OS) cores Contoter | | imerface
- Brand new core design e . 44 T \
« Near Xeon-Class Integer performance core B S St g
- ARM V8 --- 64bit ARM ecosystem = eean Y L Ry oiooic § B
- Tofu-D + PCle 3 external connection = e 0 1
. Il ol At
e ...but also an accelerated GPU-like processor = Gaa § yocecl § REa N
- SVE 512 bit x 2 vector extensions (ARM & Fujitsu) —~—~ +————m— —Z™————— "

- Integer (1, 2, 4, 8 bytes) + Float (16, 32, 64 bytes)

« Cache + scratchpad-like local memory (sector cache)

« HBM2 on package memory — Massive Mem BW (Bytes/DPF ~0.4)
- Streaming memory access, strided access, scatter/gather etc.

« Intra-chip barrier synch. and other memory enhancing features

o GPU-like High performance in HPC, Al/Big Data, Auto Driving...

Fugaku’s FUjitsu A64fx Processor is... RUS



“Fugaku” CPU Performance Evaluation (2/3) FUJITSU

= Himeno Benchmark (Fortran90)
= Stencil calculation to solve Poisson’s equation by Jacobi method

400
350
300
250
200
150
100
50
0

GFlops

346

85

— R

Intel Xeon
Platinum 8168
2 (PUs

286 30>

Fugaku AG4FX SX-Aurorat Tesla V100t

1 CPU

1 VE 1 GPU

T “Performance evaluation of a vector supercomputer SX-aurora
TSUBASA”,

Post-K Activities, ISC19, Frankfurt

SC18, https://dl.acm.org/citation.cfm?id=3291728
12 Copyright 2019 FUJITSU LIMITED



“Fugaku” CPU Performance Evaluation (3/3) FUJITSU

= WRF: Weather Research and Forecasting model
= Vectorizing loops including IF-constructs is key optimization
= Source code tuning using directives promotes compiler optimizations

WRF v3.8.1 (48-hour,12km, CONUS) on 48 cores

1.56
1.32
1 I l

Intel Xeon Platinum 8168 Fugaku A64FX Fugaku A64FX
2 CPUs 1 CPU (asis) 1 CPU (w/ src tuning)

N

-
U

O
Oy

Normalized by Xeon
—

1/ (Iteration time)

-

Post-K Activities, ISC19, Frankfurt 13 Copyright 2019 FUJITSU LIMITED



AB64FX: Tofu interconnect D FUJITSU

= |[ntegrated w/ rich resources

= Increased TNIs achieves higher injection BW & flexible comm. patterns
= Increased barrier resources allow flexible collective comm. algorithms

= Memory bypassing achieves low latency - | (momzmzmzm=ns :
| | o | HBM2 i HBM2 | A64FX
= Direct descriptor & cache injection emcl  ‘emcl

! ¥ —
T )
TofuD spec S £ !
T e &
Port bandwidih 6.8 GB/s 5 e 2|
Injection bandwidth 40.8 GB/s Y , % —
; 1 | = 0 |
Measured : 1 ! E andt R
| EREE || BEAE | © e |

Put throughput 6.35 GB/s i |
cmct

Ping-pong latency 0.49~0.54 s | HBM?2 Cﬂgﬁlz

----------------------------

-----------------------------

14 © 2019 FUJITSU
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o 3-level hierarchical storage
« 1stLayer: GFS Cache + Temp FS (25~30 PB NVMe)
e 2nd | ayer: Lustre-based GFS (a few hundred PB HDD)
« 3rd Layer: Off-site Cloud Storage
e Full Machine Spec
« >150,000 nodes

R Overview of Fugaku System & Storage =~

Compute Node + Compute&IO Node

~8 million High Perf. Arm v8.2 Cores m o m m
« >150PB/s memory BW Ce-C3 Co0-Cor- -
. Tofu-D 10x Global IDC traffic @ 60Pbps =
. ~10,000 I/O fabric endpoints ' sl G e G g
> 400 racks | | 1O Network
e ~40 MegaW.'f\tts Machine+IDC | nnnnnn Neswork

PUE ~ 1.1 High Pressure DLC [ Shared F.leSysterlns

« NRE pays off: ~= 15~30 million
state-of-the art competing CPU
Cores for HPC workloads
(both dense and sparse problems)




Fugaku Performance Estimate on 9 Co-Design Target Apps

O Performance target goal

¥ 100 times faster than K for some
applications (tuning included)
v 30 to 40 MW power consumption

O Peak performance to be achieved

PostK K
Peak DP >400+ Pflops
(double precision) (34X +) 11.3 Pflops
Peak SP >800+ Pflops
(single precision) (70X +) 11.3 Pflops
Peak HP >1600+ Pflops B
(half precision) (141x +)
Total memory >150+ PB/sec
bandwidth (29X +) 5,184TB/SeC

O Geometric Mean of Performance
Speedup of the 9 Target Applications
over the K-Computer

> 37X+

As of 2019/05/ 14

RIKEN

® ||
Porf RCCS
Categor Priority Issue Area erformance Application Brief description
y Speedup over K
1. Innovative computing 1 25x + GEN ESIS MD for proteins
infrastructure for drug discovery
Health
and
longevity .
2. Personalized and preventive Genome processing
medicine using big data 8X + Genomon (Genome aIignment)
3. Integrated simulation Earthquake simulator (FEM in
i systems induced by earthquake .
p'?('esvaesrfﬁg and teunami o 45x + GAMERA | rsiructured & structured grid)
nand - ,
Environm| 4. Meteorological and global NICAM+ Weather prediction sy§tem US[ng
ent ghvgotrlmental prediction using 1 20x -+ LETKE Big data (structured grid stencil &
9 cata ensemble Kalman filter)
5. New technologies for energy Molecular electronic simulation
creation, conversion / storage, .
and use 40X 4 NTChem (structure calculation)
Energy
issue . ,
6. Accelerated development of ComPUtatlonal MeChamCS_ SyStem
innovative ooy 35x + Adventure | for Large Scale Analysis and
" Design (unstructured grid)

.| 7. Creation of new functional initiny < i
Industrial | gevices and high-performance 30x + RSDFT Ab.-|n|t|o S|.mulat|on
competiti | materials (density functional theory)

veness
enhance 8. Development of innovative L i i
.~ ! arge Eddy Simulation
ment | design and production .
proc%sses P 25X t FFB (unstructured grid)
. 9. Elucidation of the i i i
SEiaeﬂge fundamental laws and evolution 25X + LQCD Lattice CODEEl Ll

of the universe

(structured grid Monte Carlo)




3 Fugaku Programming Environment n

RIKZH

« Programing Languages and Compilers provided by e Script Languages provided by Linux distributor
Fujitsu - E.g., Python+NumPy, SciPy

Communication Libraries

« MPI 3.1 & MPI4.0 subset

Open MPI base (Fuiitsu), MPICH (RIKEN)

« Fortran2008 & Fortran2018 subset
« C11 & GNU and Clang extensions

o C++14 & C++17 subset and GNU and Clang extensions «  Low-level Communication Libraries
«  OpenMP 4.5 & OpenMP 5.0 subset + uTofu (Fujitsu), LLG(RIKEN)
e File I/O Libraries provided by RIKEN
« Java
« Lustre
 pnetCDF, DTF, FTAR
e Parallel g%g@:r%gn%\{#gvﬂgn%eu 58 & Domain Specific * Math Libraries
Library IC>IF8VI&B(EI by RIKEN .« BLAS, LAPACK, ScaLAPACK, SSL Il (Fujitsu)

« XcalableMP - EigenEXA, Batched BLAS (RIKEN)

- FDPS (Framework for Developing Particle Simulator) P Programming fools providecipyiiulitay

. ) *  Profiler, Debugger, GUI
e Process/Thread Library provided by RIKEN

e NEW: Containers (Singularity) and other Cloud APIs
« PiP (Process in Process) « NEW: Al software stacks (W/ARM)
e NEW: DoE Spack Package Manager
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Fugaku Cloud Strategy
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e Industry use of Fugaku via
intermediary cloud Saa$S
vendors, Fugaku as laaS

laaS

Commerc

e A64fx and other Fugaku
Technology being incorporated
into the Cloud

Cloud
Vendor 1

Industry HPC Saa$S :
User 1 Provider 1 1al Cloug
Eégglr'nnfance = Cloud
: % Vendor 2
fhoncld HPC SaaS Advantage -
ser . =
— Provider 2 Cloud Worklode
Becoming HPC (including
Industry All)
User 3 HPC Saas - Significant Performance
Provider 3 BH W Advantage
. !
Various Cloud 9 ¥ _— . .
Service APl for  © KVM/Singularity, St Millions fof lCJlI:)]l:ii shipped
HPC Kubernetes, etc.
asn R-CCS !

Rahkhirth Anf ID
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National Science Foundation

Search Awards

Recent Awards

Presidential and Honorary
Awards

About Awards

7‘: WHERE DISCOVERIES BEGIN ‘:

E RESEARCH AREAS

Grant Policy Manual

Grant General Conditions

Cooperative Agreement
Conditions

Special Conditions

Federal Demonstration
Partnership

Policy Office Website

A64fx in upcoming Stony Brook Cray System

m
D

FUNDING AWARDS DOCUMENT LIBRARY NEWS ABOUT NSF

m Award Abstract #1927880

Category II : Ookami: A high-productivity path to frontiers of
scientific discovery enabled by exascale system technologies

NSF Org: OAC
Office of Advanced Cyberinfrastructure (OAC)

Initial Amendment Date: July 11, 2019

Latest Amendment Date: August 29, 2019
Award Number: 1927880
Award Instrument:

Cooperative Agreement

Robert Chadduck
OAC Office of Advanced Cyberinfrastructure (OAC)
CSE Direct For Computer & Info Scie & Enginr

Program Manager:

Start Date: October 1, 2019

End Date: September 30, 2024 (Estimated)

Awarded Amount to Date: $2,780,373.00

Investigator(s): Robert Harrison robert.harrison@stonybrook.edu (Principal
Investigator)

Barbara Chapman (Co-Principal Investigator)

Matthew Jones (Co-Principal Investigator)

Alan Calder (Co-Principal Investigator)

Sponsor: SUNY at Stony Brook
WEST 5510 FRK MEL LIB

Stony Brook, NY 11794-0001 (631)632-9949

NSF Program(s): Innovative HPC

Program Reference Code(s):
Program Element Code(s): 7619

ABSTRACT

The State University of New York proposes to procure and operate for at least four years
the first computer outside of Japan with the A64fx processor developed by Fujitsu for the
Japanese path to exascale computing (i.e., computers capable of 1018 operations per
second). The ARM-based, multi-core, 512-bit SIMD-vector processor with ultrahigh-
bandwidth memory promises to retain familiar and successful pregramming models while
achieving very high performance for a wide range of applications including simulation and
big data. The testbed significantly extends current NSF-sponsored HPC technologies and
will enable the community to evaluate and demonstrate the potential of this technology for
deployment in multiple settings. Through integration with NSF's Extreme Science and
Engineering Discovery Environment (XSEDE), the system will be widely accessible and fully
leverages existing cyber infrastructure including the XDMoD monitoring system.

What does this mean for science? Compared with the best CPUs anticipated during the
deployment period, A64fx offers 2-4x better performance on memory-intensive
applications such as sparse-matrix solvers found in many enaineerina and phvsics codes.

Home
Technologies
Sectors
Al/ML/DL
Exascale
Specials
Resource Library
Podcast

Events

Job Bank

o
R-CCS
Cray ARM-based ‘Ookami’ to Serve as Testbed for

Computational Studies at Stony Brook
August 16, 2019

STONY BROOK, N.Y., August 16, 2019 — A $5 million grant from the National
Science Foundation (NSF) to the Institute of Advanced Computational Science
(IACS) at Stony Brook University will enable researchers nationwide to test
future supercomputing technologies and advance computational and data-
driven research on the world’s most pressing challenges.

Serving as a testbed for advanced computer technologies, the Ookami system
is expected to signal a new generation of high-speed U.S. supercomputers.
Using a Cray ARM-based system, Ookami will deliver remarkably high
performance for scientific applications, in part due to its blazing-fast memory.
Robert J. Harrison, PhD, professor of applied mathematics and statistics and
director of IACS, expects that these advanced technologies will enable
researchers to more quickly and effectively conduct computational
investigations. The project is led by IACS faculty in partnership with co-Pl Matt
Jones, PhD at the State University of New York at Buffalo, whose team will
lead the capture of detailed operational metrics and provision of extensive

Node

Processor  A64FX
OOkami #Cores 48+4
Peak DP 2.76 TOP/s

Peak INT8  22.08 TOP/s

* Test bed for NSF researchers
) Memory 32GB@1TB/s
= First planned deployment of the .
. » System
Post-K processor outside of Japan
. . . #Nodes 176
* Collaboration with Riken CCS b is6 T0pss

itp://www.riken.jp/en/research/labs/r-ccs

Installation 3Q 2020

$5M award NSF OAC 1942140 7% 03FF
for purchase and operations Comms IB HDR-100

Peak INTS 3886 TOP/s

Memory 567TB
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Pursuing Convergence of HPC & Al (1)

Acceleration of Simulation (first principles methods) with Al

(empirical method) : Al for HPC

 Interpolation & Extrapolation of long trajectory MD

* Reducing parameter space on Paretho optimization of results

« Adjusting convergence parameters for iterative methods etc.

« Al replacing simulation when exact physical models are unclear, or
excessively costly to compute

Acceleration of Al with HPC: HPC for Al

 HPC Processing of training data -data cleansing

« Acceleration of (Parallel) Training: Deeper networks, bigger training
sets, complicated networks, high dimensional data...

 Acceleration of Inference: above + real time streaming data

« Various modern training algorithms: Reinforcement learning, GAN,
Dilated Convolution, etc.

ol
RCCS



D

~

R-CCS Pursuit of Convergence of HPC & Al (2) Gl

Acceleration of Simulation (first principles methods) with Al (empirical
method) : Al for HPC

* Most R-CCS research & operations teams investigating use of Al for HPC

* 9 priority co-design issues area teams also extensive plans

» Essential to deploy AlI/DL frameworks efficiently & at scale on A64fx/Fugaku

Acceleration of Al with HPC: HPC for Al

* New teams instituted in Science of Computing to accelerate Al
- Kento Sato (High Performance Big Data Systems)
- Satoshi Matsuoka (High Performance Al Systems)
- Masaaki Kondo Next Gen (High Performance Architecture)

« NEW: Optimized AI/DL Library via port of DNNL (MKL-DNN)
- Arm Research + Fujitsu Labs + Riken R-CCS + others
- First public ver. by Mar 2020, TensorFlow, PyTorch, Chainer, etc.



Large Scale simulation and Al coming together S ||
w+ [lchimura et. al. Univ. of Tokyo, IEEE/ACM SC17 Best Poster RCCS

2018 Gordon Bell Finalist]

£\

Earthquake

130 billion freedom
earthquake of entire Tokyo
on K-Computer (2018 ACM
Gordon Bell Prize Finalist,
SC16,17 Best Poster)

w & 5} @ =
= =] = o
o =} = =} =

Candidate " Candidate
Underground Al Trained by S.imulation tO. Undergrounc
Structure 1 generate candidate soft soil Structure 2

structure

Too Many Instances 22



9 Convergence of HPC & Al in Modsim o

 Performance modeling and prediction with Al (empirical
method) Al for modsim of HPC systems
o C.f. GEMS5 simulation — first principle perf. modeling

Al Interpolation & Extrapolation of system performance

Objective categorization of benchmarks
Optimizing system performance using machine learning

 Performance Modeling of Al esp. Machine Learning HPC modsim
techniques for Al
« Perf. modeling of Deep Neural Networks on HPC machines
« Large scaling of Deep Learning on large scale machines
« Optimization of Al algorithms using perf modeling
 Architectural survey and modeling of future Al systems



Deep Learning Meets HPC
6 orders of magnitude compute increase in 5 years

[Slide Courtesy Rick Stevens @ ANL]

Exasca le N eeds fo r Deep AlexNet to AlphaGo Zero: A 300,000x Increase in Compute
Lea 'ni ng Exaop/s-day * AlphaGo Zero
« Automated Model Discovery

e Neural Machine Translation
e Neural Architecture Search

« Hyper Parameter Optimization
* Uncertainty Quantification

* Flexible Ensembles

* Cross-Study Model Transfer

« Data Augmentation

» Synthetic Data Generation

* Reinforcement Learning

e Xception o TI7 Dota 1vi

e DeepSpeech2
©San2Seq o ResNets
oe(JLs0€(

® Visualizing and Understanding Conv Nets

o)
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c
©
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>
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eDQN

2014 2015 2016 2017 2018 2019
Year




4 Layers of Parallelism in DNN Training

« Hyper Parameter Search
» Searching optimal network configs & parameters
 Parallel search, massive parallelism required

» Data Parallelism
» Copy the network to compute nodes, feed different batch data, average =>
network reduction bound
» TOFU: Extremely strong reduction, x6 EDR Infiniband

‘mte,-_-mggg.el Parallelism (domain decomposition)
«—Split and parallelize the layer calculations in propagation
* Low latency required (bad for GPU) -> strong latency tolerant cores + low latency
TOFU network
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o Intra-Chip ILP, Vector and other low level Parallelism _ |
» Parallelize the convolution operations etc. —_— %’é %’é %’é %’é —
o : . XS~ RS~ RS REK
» SVE FP16+INT8 vectorization support + extremely high memory bandwidth w/ — §I¢, 5 ﬁ.?,‘ §‘?,4 —>
HBM2 — SIS IS .
——e RS K< DS~ XY N
""""""""""""""""""""""""""""""""""""""" S S DS DS
* Post-K could become world’s biggest & fastest platform for DNN — PN N N N .
training!
Massive amount of
Intra-Node total parallelism,

only possible via
supercomputing 25



@ Massive Scale Deep Learning on Fugaku Sm

RIK=N R-CCS
Fugaku Processor s
oHigh perf FP16&Int8 Unprecedened DL scalability

+High mem BW for convolutiol
¢ Built-in scalable Tofu network

High Performance DNN Convolution

High Performance and Ultra-Scalable Networ
for massive scaling model & data parallelism

"] TOFU Network w/
high injection BW
for fast

Low Precision ALU + High Memory Bandwidth + ynprecedented Scalability of Dafgguction
Advanced Combining of Convolution Algorithms

(FFT+Winograd+GEMM)
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A64FX technologies: Core performance FUJITSU
= High calc. throughput of Fujitsu’s original CPU core w/ SVE

= 512-bit wide SIMD x 2 pipelines and new integer functions

(GOPS) Core peak performance
500 INT8 partial dot product
400 [ ] C=2 (AixBi)+C
>460 8bjt  8bit  8bjt 8t
300 230 [ 2 = —
=]0) B1 B2 B3
200 >115 B :
100 >3 - | | ]
0 ‘ ‘ | 32Ybit
64-bit 32-bit 16-bit  8-bit (Elementsize)
Multiply and add INT8 partial dot product

27 © 2019 FUJITSU
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@ “Isopower” Comparsion with the Best GPU o

O,

Power 400 W (incl. CPUs, HCAs DGX-1) “similar”
Vectorized MACC Formats FP 64/32/16, INT 32(?) FP 64/32/16, INT 32/16/8 w/INT32
MACC
Multi-node Linpack 5.9 TF / chip (DGX-1) > 5.3 TF / 2 chip blade
Flops/W Linpack 15.1 GFlops/W (DGX-2) > 15 Glops/W
Stream Triad 855 GB/s 1.68TB /s
Memory Capacity 16 / 32 GB 64 GB (32 x 2)
Al Performance 125 (peak) / ~95 (measured) ~48 TOPS (INT8 MACC peak)
Tflops FP16 Tensor Cores
Price ~$11,000 (SXM2 32GB board Talk to Fujitsu &
¢4 NNN tnr:\(()_n»ily?qar 142D DI
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RIMEN

Inference

838.5PF
Training
86.9 PF

==

vs. Sumim

Inf. 1/4
Train. 1/

=]

Sl

)it

Tokyo Tech. July HPC + Al NVIDIA P100 45.8 PF | 22.9 PF / 45.8PF | 8.125 PF | 13.704 GF/W
TSUBAME3 2017 Public x 2160 (FP16) (FP32/FP16) #22 #5
U-Tokyo Apr. HPC + Al | NVIDIAP100 10.71 PF 5.36 PF / (Unranked | (Unranked)
Reedbush-H/ | 2018 Public x 496 (FP16) 10.71PF )
L (update) (FP32/FP16)
U-Kyushu Oct. HPC + Al | NVIDIAP100 11.1 PF | 5.53 PF/11.1 PF | (Unranked | (Unranked)
ITO-B 2017 Public x 512 (FP16) (FP32/FP16) )
AIST-AIRC Oct. Al NVIDIA P100 8.64PF |4.32PF/8.64PF 0.961 PF 12.681 GF/W
AICC 2017 | Lab Only x 400 (FP16) (FP32/FP16) #446 #7
Riken-AIP Apr. Al NVIDIA V100 54.0PF | 6.40 PF/54.0 PF | 1.213 PF | 11.363 GF/
Raiden 2018 | Lab Only X 432 (FP16) (FP32/FP16) #280 w
(update) #10
AIST-AIRC Aug. Al NVIDIA V100 544.0 PF 65.3 PF/544.0 | 19.88 PF |14.423 GF/W
ABCI 2018 Public X 4352 (FP16) PF #7 #4
(FP32/FP16)
NICT Summer Al NVIDIA V100 ~210 PF | ~26 PF/~210 PF nn nn
(unnamed) 2019 |LabOnly | x 1700fZFE (FP16) (FP32/FP16)
C.f. US Summer | HPC + Al | NVIDIA V100 3,375 PF | 405 PF/3,375 PF | 143.5 PF |14.668 GF/W
ORNL 2018 Public x 27,000 (FP16) (FP32/FP16) # #3
Summit

- _______________________________________________________________________________________________________________________________________________________________________________________________________________________________
Large Scale Public Al Infrastructures in Japan
Deployed Purpose Al Processor -CCS
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Predicting Statistics of Asynchronous SGD Parameters for a Large-

Scale Distributed Deep Learning System on GPU Supercomputers
Background Proposal

- In large-scale Asynchronous Stochastic Gradient Descent We propose a empirical performance model for an ASGD
(ASGD), mini-batch size and gradient staleness tend to  deep learning system SPRINT which considers probability
be large and unpredictable, which increase the error of  distribution of mini-batch size and staleness

trained DNN o
R DENSQO TLAB Mini-batch size Staleness
Objective function E @ _ _ T nodes s 1] o ] - —
Mini-batch size % ° s Predicted
Staleness=0 TEH?{WEW o _ 16 nodes - Measured
‘772,' VE[ S - T ! T T T | 3 - T T T K
W) L 2 > 100 200 300 400 500 600 0 2 < 6 B8 10
Twice asynchronous A Nsuabaten = 11 a Nsuobaich = 11
e g s -1 | Q]
| updates within | - z o | M Predicted [ |
= gradient computation| g2 o 2 <
W(+1) &P 5 ; g /\< -
E WD) E § ) = T 3 T T : T T
W([+2) : N 0 100 200 300 400 S5O 0 2 4 6 B 10

VE Staleness=2 Nhinibateh Measured Nstaleness

DNN parameters Spaci (Nobpatch: # Of samples per one GPU iteration)

» Yosuke Oyama, Akihiro Nomura, lkuro Sato, Hiroki Nishimura, Yukimasa Tamatsu, and Satoshi Matsuoka, "Predicting
Statistics of Asynchronous SGD Parameters for a Large-Scale Distributed Deep Learning System on GPU
Supercomputers”, in proceedings of 2016 IEEE International Conference on Big Data (IEEE BigData 2016), Washington




[1]
Pushing the Limits for 2D Convolution Computation On GPUs

. . [To appear SC19]
Baclégrour!d of gD convolution | e Deen Loar y Also applicable to vector processor
« Convolution on CUDA-enabled GPUs is essential for Deep Learning workload with shuffle ops, e.g. A64FX

* Atypical memory-bound problem with regular access

e Method A CUDA thread A CUDA Warp
e el e
| o ~ 4 o ] U‘/" S w oot TTT e m e E S \’\
| I A
FEEE g QO ~ H O I
L f - | 1 ! R S 5 3
) 0 0 O ¢ X g @ ¢ L ¢ ¥ . g ¢
L KXE XL m— o T4E044 1141
ieeseesssees e e 3 #1 ' : b
Pl - & & @ & ¢ . ¢80 &3
CH N N N ° @\
. . #2 N \ N ° N N
: —-E @ B @ & & ‘ 480 4B
. N N AN ° \ N
N . N ° N
o @ - O O G S @ Bo @1 ,
N e e e e - ST 7
Sumy < v X sk+sumk_1
Convolution Results
(1) Register Cache | [ (2) Compute partial sums | | (3) Transfer partial sums |
353, - -t CUFFT TS O TR R EEEEEECE
° i —100 - Ours 30 cu -e-Ours
Eva|uat|0n £ 20 - Arrayfire i £25 - Arrayfire Co
* asingle Tesla P100 and £ NPP g 20 NPP
= 60 -<-Halide e '|:15 -<-Halide {Yo
V100 GPUS % 40 cuDNN et s cuDNN N o
. . . o USRS 310 P e - -
) Slngle preCISIon L%) 20 & b /0//@/ > ---X X Fel PNCias © L%) 5 N /—‘?'_iilﬁ‘»iii;”K“/ /:»/—» (54 /—O"‘O”»/@»//
0 a‘ﬁﬁgéééé 5 AR SRIAUSIRSEEE- S A 0 é;»%zi”g’;:gffgfjﬁj:g»__e,.,en»o—— -
XY L5222 L5585 808588¢8 REZEEIEEEERREREFEEE
SR I RN - T SERNOR0oN®s&S
Evaluation on Tesla P100 GPU Evaluation on Tesla V100 GPU

[1] Peng Chen, Mohamed Wahib, Shinichiro Takizawa, Satoshi Matsuoka. Pushing the Limits for 2D Convolution Computation On CUDA-enabled GPUs.
F1630/\M/NT # —<XVAAVE1—FT 1V ITHRE. Mar. 2018.



Applying Loop Transformations/Algorithm Optimizations to Deep Learning Kernels on cuDNN [1] and ONNX [2]

* Motivation: How can we use
(FFT and Winograd) with a small
workspace memory for CNNs?

* Proposal: u-cuDNN, a wrapper library for cuDNN,
which to convolution kernels
based on DP and integer LP techniques

* Results: u-cuDNN achieves significant speedups in
multiple levels of deep learning workloads, achieving

and on Tesla
X Slow
X Large memory footprint
A
f \
GEMM-based Wingorad FFT-based

X Y X Y X Y

‘ | % \ T \ T
im2col [ | T G T -  F_

| ! B A F F

- L J | ) | |
x| - = X |ol W |=| YV X || W |=| ¥V

Winograd domain Frequency domain

D : Workspace

Convolution algorithms supported by cuDNN

» Motivation: How can we extend pu-cuDNN to
support arbitrary types of layers, frameworks
and loop dimensions?

* Proposal: Apply graph transformations on the
top of the ONNX (Open Neural Network
eXchange) format

* Results: 1.41x of speedup for AlexNet on
Chainer and
Squeezing 1.2x of average speedup for
DeepBench's 3x3 kernels

Graph transformation
(loop splitting) to an
ONNX graph

e Segreren

AlexNet before/after the transformation

[1] Yosuke Oyama, Tal Ben-Nun, Torsten Hoefler, Satoshi Matsuoka, Accelerating Deep Learning Frameworks with Micro-batches, In proceedings of IEEE Cluster 2018, Belfast UK, Sep. 10-13, 2018.
[2] (To appear) Yosuke Oyama, Tal Ben-Nun, Torsten Hoefler, Satoshi Matsuoka, Applying Loop Transformations to Deep Neural Networks on ONNX, [&3R4LIBH2SIARIRE, 2019-HPC-170. In W51)/55 B/ 7R (T

B3N —"7—2> 3 v (SWoPP2019), Jul. 24-26, 2019.



1-CUDNN: Accelerating Deep Learning Frameworks with Micro-batches [1]

* Motivation: How can we use faster convolution algorithms (ex. FFT and Winograd) with a small
workspace memory for Convolutional Neural Networks (CNNs)?

« Proposal: u-cuDNN, a wrapper library for the math kernel library cuDNN which is applicable for most
deep learning frameworks
« M-cuDNN applies loop splitting by using dynamic programming and integer linear programming techniques

* Results: u-cuDNN achieves significant speedups in multiple levels of deep learning workloads
* 1.16x, 1.73x of average speedups for DeepBench's 3x3 kernels on Tesla P100 and V100 respectively
* achieves 1.45x of speedup (1.60x w.r.t. convolutions alone) for AlexNet on V100

X Slow
X Large memory
footprint ~
| 1 | — . 4.54x
. — B 3x ' =
GEMM-based Wingorad FFT-based ‘1o o %:‘éa%uartile I
X 7x7 . iod
. o 1 ® 10x5 median S
X Y X Y X Y }g ’ & 20x5 1% quartile =
im%col i | B‘T G ATT ]‘-'— F— ]-'T_1 S + min . §1 73 ‘5’“
: : ‘ : : ‘ i 16 l B, o~ % -
X' ' - X o]l W |=| Vv X |°| W |=| ¥V 14 = et e eod o & Bl o =
Winograd domain Frequency domain K80 P100-SXM2 Pl(z(?];Sl:;MQ V100-SXM2 v1o(?1;s|?;r\/|2 (¥e1n(12-rs(>:<l\:|e2s)
[ ]+ workspace Relative speedups of DeepBench’s forward convolution layers against
cuDNN

Convolution algorithms supported by cuDNN

[1] Yosuke Oyama, Tal Ben-Nun, Torsten Hoefler, Satoshi Matsuoka, Accelerating Deep Learning Frameworks with Micro-batches, In proceedings of IEEE Cluster 2018, Belfast UK, Sep. 10-13, 2018.



Training ImageNet in Minutes

Rio Yokota, Kazuki Osawa, Yohei Tsuji, Yuichiro Ueno, Hiroki Naganuma, Shun lwase, Kaku
Linsho, Satoshi Matsuoka TOkyO Institute ofTechnoIogy/Riken +Akira Naruse (NVIDIA)

Egyp
7 ) . e
3§

»- ‘\

- -

i d 3 X -

#GPU time
Facebook 512 30 min
Preferred Networks 1024 15 min
UC Berkeley 2048 14 min
Tencent 2048 6.6 min
Sony (ABCI) ~3000 3.7 min
Valication Error Google (TPU/GCC) 1024 2.2 min
A MimbaBmh - C '(I'Xléygl))'l'ech/ NVIDIA/Riken 4096 2 min

Source Ben-nun & Hoefler https://arxiv.org/pdf/



Accelerating DL with 2nd Order Optimization and Distributed Training [Tsuji et al.] =>
Towards 100,000 nodes scalability

. Ba C kg ro u n d GPU1 Backward ll Inverse and C;. L/
* Large complexity of DL training. - P— H 1 pr—

Reduce-Scatter-V All-Gather-V

* Limits of data-parallel distributed \ |

training. Data-pvarallel Model-parallel
« > How to accelerate the training Design our hybrid parallel distributed K-FAC
further?
= Method __
] ] Goyal et al. 14076 76.3%
* Integration of two techniques: 1) Akiba et al oK 3510 25 4%

data- and model-parallel distributed
training, and 2) K-FAC, an approx 2nd
order optimization. Ours 128K

[ Eva|uation and An aIYSiS Comparison with related work (ImageNet/ResNet-50)

» Experiments on ABCI supercomputer.

« Up to 128K batch size w/o accuracy - 125 GPUs (simaton)
degradation. | ‘ |

* Finish training in 35 epochs/10 min/
1024 GPUs in 32K batch size.

* A performance tuning / modeling. .

Ying et al. 64K 1760 75.2%
978 75.0%

Milliseconds
= @
(=} f=1

w
=

Forward Backward ~ Reduce-Scatter-V Inverse and C  All-Gather-V Update

Time prediction with the performance model

Osawa et al., Large-Scale Distributed Second-Order Optimization Using Kronecker-Factored Approximate Curvature for Deep
Convolutional Neural Networks, CVPR 2019
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Fast ImageNet Training

2018122 Assen

Top 10 Arxiv Papers Today in Computer Science

2.06 Mikeys
4000— } #1.9 ! |_; imization Method for Large Mini-| h: Training_Res|
Y 20 on ImageNetin 35 Epochs

° Kazuki Osawa. Yohei Tsuji. Yuichiro Ueno. Akira Naruse, Rio Yokota. Satoshi Malsuoka

‘ Large-scale distributed training of deep neural networks suffer from the generalization gap caused by the
increase in the effective mini-batch size. Previous approaches try to solve this problem by varying the learning

‘ rate and batch size over epochs and layers, or some ad hoc modification of the batch normalization. We
‘ propose an alternative approach using a second-order optimization method that shows similar generalization
‘ capability to first-order methods, but converges faster and can handle larger mini-batches. To test our method
°
$
|

W
o
o
o

on a benchmark where highly optimized first-order methods are available as references, we train ResNet-50
on ImageNet. We converged to 75% Top-1 validation accuracy in 35 epochs for mini-batch sizes under 16,384,
and achieved 75% even with a mini-batch size of 131,072, which took 100 epochs.

more | pdf | html
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o
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Our measurements (following DeepBench specs) for
Interconnect on Tsubame 2.5 and K computer

Baidu’s Allreduce Benchmark

baidu-allreduce on 448 nodes of TSUBAME2
10

e hardcoded

1

steps:

0B—2GiB & o
e hardcoded ¢ .,

#iterations < o

per msg size ° 4 g @ 'égy ég),,go @/\Py &£
e GPU/Cuda-dependency LU

easily removable if necessary ces cemens i send boer

Our “sleepy-allreduce” (modified Intel IMB)

e emulated DL training
. . A e erditon or Bk
e alternating 400MiB 2

Allreduce and 0.1s
|II||||"”I|

sleep for compute

Nvidia’s Collective Comm. Library (NCCL) Tests

e benchmark GPU collectives for DL frameworks which
use NCCCL as backend
e Example visualization:

All-Gather

Bandwidth [GB/s]
a o @ 3 =

Others:  a<iise = — .
- Tensorflow's altreauce bencnmark (see o FgmedDblg
Tf_cnn_benchmarks for details; needs very recent TF)

- PFN has benchmark/data for ChainerMN / PFN-Proto

(see their blogpost; unknown if open-source)



Common/Generic Interconnect Benchmarks

Intel MPI Benchmarks (IMB) OSU Micro-Benchmarks (from Ohio-State Univ)
e IMB and OSU benchmarks very similar e MPI collectives relevant for DL training + p2p BMs:
e testing many P2P, collectives, MPI-1/0 functions N
e Default comm. size range from 0B—4MiB o s
(power-2 steps; can be modified manually) | o

e MPI-Allreduce example for K:

0.01
[GB/S] Throughtput of Sendrecv
10,000.00 0.001 10
1D(384) I o
0.0001 .
1,000.00 2D(64x6)
1E-05 —@— 3D(8x6x8:strict) /
100.00 /

1E-06

Runtme [in s]

—.—:g;zrlgdog:s. Bcast 1IMB Allreduce 1IMB Bcast 200MB Allre 4.0
o Soree node 20
§ Lo T o Many other, less common MPI (m [Byte]
;: I Netgauge (for eff b]sect]on bc LE+0 L1.E+1 1.E+2 1.E+3 L1E+4 1E+5 LE+6 1E+7 1.E+8 1.E+9
£ - BenchlT suite (incl. MPI BMs; more fine- granular steps)
- SPEC MPI2007 (more application-centric)
000 - etc.
> * = \Spo bt pcp < o X\on pcp O S)Cp ‘dao A ° \_S:Do Qcp @0

Message size [in bytes]



Optimizing Collective Communication in DL Training (1 of 3)

> Reducing training time of large-scale AI/DL on GPUs-system.
> Time for inference = O(seconds)
> Time for training = O(hours or days)

> Computation 1s one of the bottleneck factors

> Increasing the batch size and learning in parallel
> Training ImageNet in 1 hour [1]
> Training ImageNet in ~20 minutes [2]
> Communication also can become a bottleneck
> Due to large message sizes

[1] P. Goyal, P. Doll"ar, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia, and K. He,
“Accurate, large minibatch SGD: training imagenet in 1 hour,” arXiv preprint arXiv:1706.02677, 2017
[2] Y. You, Z. Zhang, C. Hsieh, J. Demmel, and K. Keutzer, “Imagenet training in minutes,” CoRR, abs/

Ad ™I\ /NI /\ d Jd NI\ d ™



Optimizing Collective Communication in DL Training (2 of 3)
(Challenges of Large Message Size)

Compute the gradient GPU1 GPU2 .| cpPuPi GPU P
G; of the weight C N || N || oD
on each GPUi = . —
Huge message size
GPUs communication to P e N (~100MB - 1GB)
compute the mean of the T N A
gradients (Allreduce — S~
operation)
P
¢= Z,-zlm GPU1 GPU2 GPUP-1 GPUP

Example of Image Classification, ImageNet data set

AlexNet GoogleNet ResNet DenseNet
(2012) (2015) (2016) (2017)

# of gradients [1] 61M 5.5M 1.7-60.2M  15.3 - 30M
Message size 244 MB 22MB 240 MB 120 MB

[1] T. Ben-Nun and T. Hoefler, “Demystifying parallel and distributed deep learning: An in-depth concurrency
analysis,” arXiv preprint arXiv:1802.09941, 2018.



Optimizing Collective Communication in DL Training (3 of 3)

Proposal: Separate intra-node and inter-node comm. => multileader hierarchical algorithm

> Phase 1: Intra-node reduce to the node leader
> Phase 2: Inter-node all-reduce between leaders
> Phase 3: Intra-node broadcast from the leaders

Key Results:
> Cut down the communication time up to 51%
> Reduce the power consumption up to 32%

N N(p—k)
2(P-1) steps, send — per step [ omnpun spne s _| per step
Ring-based algorithm Multileader hierarchical algorithm
" Good for large message size  Optimized for inter-node comm.
=  Worse with inter-node comm.
"Efficient MPI-Allreduce for Large-Scale Deep Learning on GPU-Clusters", Truong Thao Nguyen, Mohamed Wahib, Ryousei Takano, Journal 41

of Concurrency and Computation: Practice and Experience (CCPE) , Accepted: to appear in 2019.10



1st large-scale Prototype — Motivation for ﬂ CF%III B howie

Hewlett Packard
HyperX akz  R-CCS  tokyoTech Enterprise

TokyTech’s 2D HyperX:
24 racks (of 42 T2 racks)

96 QDR switches (+ 1st rail)
without adaptive routing

1536 IB cables (720 AOC)
e 672 compute nodes
57% bisection bandwidth

TSUBAME 25

I 1 oo S
Tokyo Institute Of Technology

Full marathon worth of IB and
ethernet cables re-deployed

1

Multiple tons of
equipment moved around

Fig.1: HyperX with n-dim. integer lattice
(d,,...,d,) base structure
fully connected in each dim.

64-ary 3-tree
Fat-Tree 1\\

ehasrle

1st rail (Fat-Tree) maintenance

Full 12x8 HyperX constructed

nd much more ... J
- PXE / diskless env ready
- Spare AOC under the floor
- BIOS batteries exchanged

Fig.2: Indirect 2-level Fat-Tree

_ Theoretical Advantages (over Fat-Tree)
(_BP) First large-scale 2.7 Pflop/s o Reduced HW cost (lessAOC/SW) e« Lower latency (less hops)
HyperX installation in the world! * Only needs 50% bisection BW * Fits rack-based packaging




—
p OIII h Hewlett Packard

A=t~ R-CCS  tokyoTech Enterprise

Evaluating the HyperX and Summary

- 3385555 (3338859 83859830 3839555K Higher
1_1 m r- n f-r bl Of E;leooollllllllI;;;;;;;IwIIIIIIIISbetter
:1 comparison (as fair as possible) 5 o000 |- ) N A
672-node 3-level Fat-Tree and 12x8 2D HyperX S s000 |-
e NICs of 1st and 2nd rail even on same CPU socket £ 6000 |- ”:
e Given our HW limitations (few “bad” links disabled) 5 4000 |- - l - i s
£ 2000 |-----=lWLT -T, - gEL SN
! y g‘ 0+TTlllll+TTlllIl+TTIIIII+TJ.IIIII TIIII/Z.
Wide variety of benchmarks and configurations S TIRBYISY TURBYIGE|TINSYIFL TURBIIGE TUNSEEEE
Number of compute nodes
¢ 3X Pure MPI benChmarkS Fig.3: HPL (1GB pp, and 1ppn); scaled 7> 672 cn Greener is
e 9x HPC proxy-apps | preen
- 3X Toplsoo benclhmarkls H‘-’:i:*(:::i -0.01 -0.07 -0.06 -0.07 -0.07 -0.07 031 +0.11 M -0.01 -0.01 -0.01 -0.07 - .50 + -0. 005 006 -005 -0.08 . -0. ] A
e 4x routing algorithms (incl. PARX) $mn| o ow om ow on oo [N on Loz ow am n om <o b ]
a 3X rank_z_node mappings g 12::: :0.03 -0.05 ;o.oz +0.01 To.oz TZ.:; i0.17 o e :o.oz +0.02 +0.00 + ZE E:?z zz Z(lj é
* 2x execution modes s - S
Primary research questions T :
. . . Fig.4: Baidu’s (DeepBench) Allreduce (4-byte float) scaled 7> 672cn (vs. “Fat tree / ftree / linear” baseline)
Q1: Will reduced bisection BW
(57% for HX vs. 2100% for FT) )
impede performance? 1. Placement mitigation can alleviate bottleneck Conclusion ]
Q2: Two mitigation strategies % 'i'.yperx w/ dp'?‘RX rOLI‘It'”g d°“tperf°r/ms FTin HPL HyperX topology is
against lack of AR? (> e.g. 2 HEEAERE NSNS CRRIQ St B S Sl promising and
placement vs. “smart” routing) 4. Random good for DL-relevant msg. size (— 1%) cheaper alternative to
5. “Smart” routing suffered SW stack issues Fat-Trees (even w/o
6. FT + ftree had bad 448-node corner case

adaptive R) !



Evaluating the HyperX Topology: A Compelling Alternative to Fat-Trees?[SC19]

1:1 comparison (as fair as possible) of 672-node 3-level Fat-Tree and 12x8 2D
SUB A HyperX
2 5 + NICs of 1st and 2nd rail even on same CPU socket D e
Tokyo nsitute ofTechnology » Given our HW limitations (few “bad” links disabled) Fat-Tree —
= 12x erX
Full marathon worth of IB and Advantages (over FT) assuming adaptive routing (AR
ethernet cables re-deployed « Reduced HW cost (AOC/switches) - similar perf.
U » Lower latency when scaling up (less hops) i
. . = e
Multiple tons of » Fits rack-based packaging model for HPC/racks
equipment moved around * Only needs 50% bisection BW to provide 100% throughput for uniform random
s . : 0 S100%) i .
15t rail (Fat-Tree) maintenance Q1: Wlll-r_efjticed bisection BW (57% for HX vs. 2100%) impede Allreduce Greener is
i perfO rn— ~ HyperX / DFSSSP / linear HyperX / DFSSSP / random / \ HyperX / PARX / clustered b_etter
Full 12x8 HyperX constructed Q2: Mit ;Zﬁiii on | om om an am  om [EENGEE T of® 1n ax om om  om _pw | com Nyoo o <o am om o [
routing == EZ‘Z o T }Z.Z: gZ‘ZZ .u. EZ:Ti o :‘;'Zl °° T2‘22 = .

-0.04 E -0.¢ -0.21

nd much more ...

- PXE / diskless env ready

- Spare AOC under the floor
- BIOS batteries exchanged

<003 0. K 001 ¥
-0.38 0. -0.f +5.22
-0.02 g K +5.89

Relative Perforamnce Gain

length (containing 4-

-0.05

Array |

.\@) -SBaUIF £D7I-Fﬂ%p‘?' l Fig.2: Baidu’s (D;:;nBench) Allreduce (4-byte float) scal;:;o;m%672 cn (vs. “Fat—tree./ ftree / Iin;ar” baseline)
2 !ﬁr‘. e.24ra (of 42 T2 racks) 1. Linear good for small node counts/msg. size
a-_@im@ IIa.tl% I& w1t ches (+ 1st rail) + | HyperX topologg
- . Random good for DL-relevant msg. size ( ,)s promisin

* 1536 IB cables (720 AOC) 2 % e?pter afl ter:natnt/e
N ' * 672 compute nodes 3. Smart routing suffered SW stack issues 0 state-or-the-ar
Fig.1: HyperX with n-dim. integer - |
i ‘gf""d") o s””"‘"t”g * 37% bisection bandwidth 4. FT + ftree had bad 448-node corner case Fat-Tree networks!

fully connected in each dim. Funded by and in collaboration with Hewlett

[1] Domke et al. “HyperX Topology: First at-scale Implementation and Comparison to the Fat-Tree” to be presented at SC’19 and HOTI’19 I_Pl?ﬁtsaJ Jsggemk%emﬁn%ggpﬁ%rtceﬁ%g



Breaking the limitation of GPU memory for Deep Learning

Haoyu Zhang,Wahib Mohamed, Lingqi Zhang,Yohei Tsuji, Satoshi Matsuoka

Motivation: GPU memory is relatively small in comparison to recent DL work load

Analysis:

Util = Tproe/T
B Num_buffer(l)/Procyy(l)
~ max(Num_buf fer(l)/Procr(l),Num_buf fer(I — 1) /Swap_inyy,)

Num_buf fer(l)/Procyp(1)

max(Num_buf fer(l)/Procy(l),Num_buf fer(l —1)/Swap_inyy)’

Util = Catch . .
< Y (Procp(i) X Tproc(i))

1, T ;
Swap_inty

Swap in

Swap out

Process

old Swap in

new Swap in

Swap out

Process

Foward

1

Backward

I

swap out after

4]

precessing
0 1\@ 3 14/5|6 |7 precessing after
swap in
wasted time
Foward Backward
i 76 i4: 3 41 0
Start SWap in When .............................................. I ...............
have free memory |
a1 o '
stop swap out when |
memory is enough |



Breaking the limitation of GPU memory for Deep Learning

Haoyu Zhang,Wahib Mohamed, Lingqi Zhang,Yohei Tsuji, Satoshi Matsuoka

Proposal:

OOC-Paleo

, L L GPU
Paleo’s computation time estimation { Algrithm

+

Far Memory
Near Memory

Connection
Data transfer time estimation

+

DNN-lik
Data transfer strategy { \éapacitly_egased

!

OOC-training time estimation

Case Study & Discussion:

UM-Chainer

prefetch()->explicit swap-in
no explicit swap-out

30

20

10

0

Memory Capacity: Latency:
° Not so important as latency ° Higher Bandwidth make no
and throughput sense when buffer is too small

e Latency is decided by physical

law

B Original [ UM

UM-prefetch

il ol ol w

B UM-prefetch+

8 16 32 64

Bandwidth:
° Higher connection
bandwidth

128

BatchSize

° Lower Memory bandwidth

192 256

Processor:

320

384

° Slower processor is
acceptable



Breaking the limitation of GPU memory for Deep Learning

Haoyu Zhang,Wahib Mohamed, Lingqi Zhang,Yohei Tsuji, Satoshi Matsuoka

Assuming we have higher Bandwidth...

Resnet50,Batch-size=128

16GB/s->64GB/s:
Training time can be half

64GB/s->128GB/s:
Only a little time reduced

>128GB/s:
Most of the layers can not make full
use of the bandwidth

>512GB/s:
Time almost do not decrease

Bandwidth Time percentage percentage
(bandwidth not full) (computation can not overlap)

16 967.8595572 | 0.409 0.733

32 569.9550342 | 0.466 0.642

64 407.2978908 | 0.574 0.472

128 371.9318064 | 0.688 0.438

256 362.5661138 | 0.835 0.398

512 359.7637498 | 0.915 0.398
1024 359.3012901 | 0.983 0.386

oo 359.3012901 | 1.000 0.386
Original version | 306.9286403 | N/A N/A
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Background

s CosmoFlow [1]is a project to estimate cosmological parameters from 3-dimensional
universe data by using a 3D CNN

Input Output
(4%512%512 %512 Voxels) (A vector of length 4)
[ 0.242 |
1- %
= 0.145
[ —0.489 ]

g Problem: GPU memory is too small to process high-resolution universe data
— Another way to parallelize the model efficiently?
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Background

s Data-parallel training distributes data
samples among GPUs

v~ Good weak scalability (O(1000) GPUs)

|nput conv fc

GPU1.| .

2- AII reduce

v v B
GPU2 | > I < Back-prop.

) Back-prop.

s Model-parallel training distributes the
computation of a single sample (model)
among GPUs

v Can use more GPUs per sample
v Cantrain larger models

input conv fc

GPUL ] == ——

g Data-parallelism + model-parallelism = Hybrid-parallelism
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Proposal: Extending Distconv for 3D CNNs

s LBANN + Distconv [2]: A parallelized stencil computation-like hybrid-parallel CNN

kernel library
Input convl "e conv?/ fcl,...,3
Rank — il
[0 —nead >. SN ’D’ %‘ [ —Shuffle , gy Conv. , gy FC, L Back—prop.\
1 - []:| 1
2 £
g G [ 1] Halo ex. ST |
3 D + conv. B GPU
-+ = Sample : . y
Preload 4 Parameter gradients aggregation A A
PFS >< exchange v (all-reduce) v Y
4 v _ Read Shuffle Conv. Shuffie Conv. FC - " p
- [ % 7 ] 7 vEm > Hﬁ Back-prop.
g f e D
6 = ~— Haloex.
. o !+ conv. L& il
CPU | i 1 GPU
_ J
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Evaluation: Weak scaling

= Achieved 111x of speedup over 1

node by exploiting
hybrid-parallelism, even if T2
layer-wise communication is L]
introduced 5
The 8-way partitioning is 1.19x

" 8 yP .rs . 9 . 9 2_101 = o 2 x 2-way(Synthetic)
of 4-way partitioning with a » a 4way (Synthetic)
mini-batch size of 64 : o Sway (Synthetic)

w w w 12 4 8 16364128
2
H H H Number of nodes
D D D Figure: Weak scaling of the CosmoFlow network.
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Evaluation: Strong scaling

5 Achieved 2.28x of speedup on 4 nodes (16 GPUs) compared to one node whenN = 1
g 1he scalability limit here is 8 GPUs, and the main bottleneck is input data loading

02 |
IS s
= - 1
‘54 4< - 2.28x
g \\\\\ |
8 NN m Seq. data load
= Forward
16 — Backward
M Update
| | | | |
0.0 0.1 0.2 03 04
Time [s]

Figure: Breakdown of the strong scaling experimentwhen N = 1.
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Machine Learning Models for Predicting Job Run Time-Underestimation in HPC system [SCAsia 19]

Motlvatlon & Negatlve effeCtS = Evaluating by Average Precision(AP)

]
. . b . . . 1.0 10] T
1. When submitting a job, users need to estimate their job || 00 e e iyl [1%0
I'untll’ne 08 ® :gg% L 084 gr:,-g ,BQ '§§'
: & A 10 oe
. . . . 0.6 gD m ﬁ | I 06 00 g P
2. Ifjob runtime is underestimated by the users s [, ! ? 1 @ TIO U,
04 I 0.4
3. Job will be terminated by HPC system upon reaching its J .
time limit
00 0.0
. Increasing time and financial cost for HPC users HEHHHHHHHEE IR HE
iz §E33cE03E EEREE0TES SEEcBrETEfzcfuiiiiaices
I ' g% 42243558837 09522 588 J8g85, ° F 5882597585
. Wasting time and system resources. i RRCEECE XIS | HERE S 2535¢5° ¥
'3 N g= §gl

Hindering the productivity of HPC users and machines

= Evaluating by Simulation with
= Method Saved-Lost Ratez(rSLR)

*  Apply machine learning to train models for predicting whether Saved 1;1 (j.used_walltime ~C)
the user has underestimated the job run-time SLRc =

; I FP
Lost + Punishment Z 1j.usea’_walltimep+ Zf 1Cfp
p: p:

*  Using data produced by TSUBAME 2.5

Input Feature Data Building Models Training and Runtlme-underestlmated JObS can be p redlCted Wlth
Engineering  Preprocessing Test different accuracy and SLR at different checkpoint times

_ — . Summing up the “Saved” time of all the applications at

Ganglia+

SV | ents best SLRs checkpoints, 24962 hours can be saved in total
— [sutst 1 with existing TSUBAME 2.5 data _
. Helping HPC users to reduce time and financial loss
e & . Helping HPC system administrators free up computing
& resources

Guo, Jian, et al. "Machine Learning Predictions for Underestimation of Job Runtime on HPC System." Asian Conference on Supercomputing Frontiers. Springer,
2018



Many Core Era
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Post Moore

Cambrian Era .
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Flops-Centric Monolithic Algorithms and
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Flops-Centric Monolithic System Software

Cambrian Heterogeneous System Software

Hardware/Software System APIs
Flops-Centric Massively Parallel Architecture

Homogeneous General Purpose Nodes
+ | ocalized Da Compute

odes
< >
Mute
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>
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Loosely Coupled with Electronic Interconnect

Compu
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Transistor Lithography Scaling

(CMOS Logic Circuits, DRAM/SRAM)

Hardware/Software System APIs
“Cambrian” Heterogeneous Architecture

o000
Massive BW Dataflow
Computing
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3-D Package DNN&

Neuromorphic
Non-Volatile D Quantum

Memory Low Precision Computing
Error-Prone

0000
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3-D+Photonic Switching Interconnected

Novel Devices + CMOS (Dark Silicon)

(Nanophotonics, Non-Volatile Devices etc.)
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R-CCS Strategies Towards Post-Moore Era G

e Basic Research on Post-Moore

Funded 2017: DEEP-Al CREST (Matsuoka)

Funded 2018: NEDO 100x 2028 Processor Architecture (Matsuoka, Sano,
Kondo, SatoK)

Funded 2019: Kiban-S Post-Moore Algorithms (NakajimaK etc.)

Submitted: Neuromorphic Architecture (Sano etc. w/Riken AIP, Riken CBS
(Center for Brain Science))

In preparation: Cambrian Computing (w/HPCI Centers)

e Author a Post-Moore Whitepaper towards Fugaku-next

» All-hands BoF last week at annual SWoPP workshop

» Towards official “Feasibility Study” towards Fugaku-next

Similar efforts as K => Fugaku started in 2012
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2028: Post-Moore Era

~2015 ~25 Years Post-Dennard,
Many-core Scaling era

2016 ~Moore’s Law Slowing Down

2025~ Post-Moore Era, end of transistor
lithography (FLOPS) improvement

Basic Research #1: NEDO 100x Processor QU

L8 B}
35 YEARS OF MICROPROCESSOR TREND DATA j=====7"7
L g
7 L ,/’
10 7 Tra rs
; : : : . i (thousands )
S
10°
: : o e T Single-th
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10”
> . - x = . : -Tﬁ'dm ___________
107 &S T g - gl ;“" EY (Watts)
1 gies Number
10 Cores
10°L - ‘/“/

1975 1980 1985 1990 1995 2000 2005 2010 2015

Research: Architectural investigation of perf. impirévémeént ~2028 "

* 100x in 2028 c.f. mainstream high-end CPUs circa 2018 across applications

Key to performance improvement: from FLOPS to Bytes — data movement architectural

optimization

« CGRA - Coarse-Grained Reconfigurable Vector Dataflow

« Deep & Wide memory architecture w/advanced 3D packaging & novel memory devices

« All-Photonic DWM interconnect w/high BW, low energy injection

« Kernel-specific HW optimization w/low # of transistors & associated system software, programming, and

algorithms



NEDO 100x Processor QU
Towards 100x processor in 2028

» Various combinations of CPU architectures, new memory devices and 3-D technologies
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* Perf. measurement/characterization/models for high-BW intra-chip data movement
* Cost models and algorithms for horizontal & hierarchical data movement

*  Programming models and heterogeneous resource management

Future HPC & BD/AI Converged
2028 Strawman 100x \
Architecture

tions

Memory Interface

DeAITIBISek (A '\, | Data-flow Controller (DFC)
N

> [PE][PE][PE][PE]

Interconnect

F_RAIO0—~Ak LR .\//
Heterogeneous & EBEEEEE
High BW Vector CGRA | | =
: - AL OTAE 7 L A
22%';';%9}&]&6) (R CCS) (Reconfigurable Array, RA) m*ﬁ’%cﬁéfﬁiﬁfezsff oY

>10TB/s**ta,ﬁ_l_lJ_l_l_l_l_l_‘
High-Bandwidth ~ \ A 58GB 3D SRAM

. ) >37B/s7dst L L A TN T 11
Hierarchical Memory =59 __——— | >64GB 2.5D DRAM
systems and their

AT SR
management & gﬁ_‘f-%—t”w > 1TB NVM
Programming (Tokyo Tech)

100x BYTES-centric

architecture through
performance

simulations (R-CCS)

On-chip interconnect

RA RA RA RA

/
/| RA RA RA RA

Off-chip Interconnect

Y40MISN WAM Sdq101

Mult-context
Reconfiguraton Controller

RA RA RA RA

New programming
methodologies for
heterogeneous, high-
bandwidth systems
(Univ. Tokyo)

HEmEN
Novel'memory devices
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