
 1

● Satoshi Matsuoka
● Director, RIKEN Center for Computational Science
● 20191106 France-Germany-Japan Presentation @ Tokyo

The first “exascale” supercomputer
Fugaku – HPC, BD & AI

R-CCS
International core research center in the
science of high performance computing
(HPC)

Science of Computing by Computing for Computing

 3

● 1. Launching, Operating, and Improving ‘Fugaku’ – the first ‘Exascale’
Supercomputer for Simulation, Big Data and AI

● 2. Extreme improvements in convergence of HPC for AI
● Improving processor performance for inference & training
● Extreme data parallelism for extreme scaling
● Incorporating model parallelism for performance and ultra large neural

networks
… and AI for HPC (challenges in apps & algorthms)

● 3. Big data with IoT and HPC convergence --- how to process data
WITHOUT moving or storing them
● Not just traditional compression, filtering…

● 4. Post-Moore computing towards 2030s --- sustainable future for HPC,
Big Data, and AI (and Fugaku-Next)

Challenges Ahead for R-CCS

 4

● 1. Launching, Operating, and Improving ‘Fugaku’ – the first ‘Exascale’
Supercomputer for Simulation, Big Data and AI

● 2. Extreme improvements in convergence of HPC for AI
● Improving processor performance for inference & training
● Extreme data parallelism for extreme scaling
● Incorporating model parallelism for performance and ultra large neural

networks beyond 10s GByte
… and AI for HPC (challenges in apps & algorthms)

● 3. Big data with IoT and HPC convergence --- how to process data
WITHOUT moving or storing them
● Not just traditional compression, filtering…

● 4. Post-Moore computing towards 2030s --- sustainable future for HPC,
Big Data, and AI (and Fugaku-Next)

Challenges Ahead for R-CCS

Tod
ay’s

Ta
lk

�5

The ‘Fugaku’ Supercomputer, Successor to the K-
Computer

Installation Dec. 2019~, operations early 2021

Broad Base --- Applicability & Capacity
Broad Applications: Simulation, Data Science, AI, …  

Broad User Bae: Academia, Industry, Cloud Startups, …

H
igh-Peak --- A

cceleration of
Large Scale A

pplication
(C

apability)

Mt. Fuji representing 
the ideal of supercomputing

The Nex-Gen “Fugaku”
富岳 Supercomptuer

Arm64fx & Fugaku 富岳 /Post-K are:

 7

● Fujitsu-Riken design A64fx ARM v8.2 (SVE), 48/52 core CPU
● HPC Optimized: Extremely high package high memory BW (1TByte/s), on-die Tofu-D

network BW (~400Gbps), high SVE FLOPS (~3Teraflops), various AI support (FP16,
INT8, etc.)

● Gen purpose CPU – Linux, Windows (Word), other SCs/Clouds
● Extremely power efficient – > 10x power/perf efficiency for CFD benchmark over

current mainstream x86 CPU
● Largest and fastest supercomputer to be ever built circa 2020

● > 150,000 nodes, superseding LLNL Sequoia
● > 150 PetaByte/s memory BW
● Tofu-D 6D Torus NW, 60 Petabps injection BW (10x global IDC traffic)
● 25~30PB NVMe L1 storage
● The first ‘exascale’ machine (not exa64bitflops =>apps perf.)
● Acceleration of HPC, Big Data, and AI to extreme scale

�8

Brief History of R-CCS towards Fugaku

January 2006
Next Generation Supercomputer
Project (K Computer) start

July 2010
RIKEN AICS established
August 2010
HPCI Project start
September 2010
K computer installation starts
First meeting of SDHPC (Post-K)

June 2011
#1 on Top 500
November 2011
#1 on Top 500 > 10 Petaflops
ACM Gordon Bell Award
End of FY 2011 (March 2012)
SDHPC Whitepaper

2006

2010

2011

2012

2014

April 2012
Post-K Feasibility Study start
3 Arch Teams and 1 Apps Team
June 2012
K computer construction complete
September 2012
K computer production start
November 2012
ACM Gordon bell Award

April 2014
Post-K project start
June 2014
#1 on Graph 500

April 2018
AICS renamed to RIKEN R-CCS.
Satoshi Matsuoka becomes new  
Director
Aug 2018
Arm A64fx announce at Hotchips
Oct 2018
NEDO 100x processor project start
Nov 2018
Post-K Manufacturing approval by  
Prime Minister’s CSTI Committee

2018

March 2019
Post-K Manufacturing start
May 2019
Post-K named “Supercomputer Fugaku”
July 2019
Post-Moore Whitepaper start
Aug 2019
K Computer shutdown
Dec 2019
Fugaku installation start (planned)

20192013

End of FY2013 (Mar 2014)
Post-K Feasibility Study Reports

Co-Design Activities in Fugaku

● Extremely tight collabrations between the Co-Design apps centers, Riken,
and Fujitsu, etc.

● Chose 9 representative apps as “target application” scenario
● Achieve up to x100 speedup c.f. K-Computer
● Also ease-of-programming, broad SW ecosystem, very low power, …

Multiple Activities since 2011

・9 Priority App Areas: High Concern to
General Public: Medical/Pharma,
Environment/Disaster, Energy,
Manufacturing, …

Select representatives
from 100s of
applications signifying
various computational
characteristics

Design systems with
parameters that consider
various application
characteristics

Science by
Computing

Science of
Computing

A 6 4 f x
For the

Post-K
supercomputer

Post-K Activities, ISC19, Frankfurt Copyright 2019 FUJITSU LIMITED

■ TSMC 7nm FinFET & CoWoS
■ Broadcom SerDes, HBM I/O, and

SRAMs
■ 8.786 billion transistors
■ 594 signal pins

A64FX Leading-edge Si-technology

Core Core Core Core Core Core Core Core Core Core

Core Core Core Core Core

Core Core Core Core

Core Core Core Core Core Core Core

Core Core Core Core Core Core Core Core Core Core Core Core

Core Core Core Core Core Core Core Core Core Core

Core Core Core Core

L2
Cache

L2
Cache

L2
Cache

L2
Cache

H
B

M
2 Interface

H
B

M
2 Interface

H
B

M
2

in
te

rf
ac

e
H

B
M

2
In

te
rf

ac
e

PCIe InterfaceTofuD Interface

R
IN

G
-B

us

�10

Fugaku’s FUjitsu A64fx Processor is…

 11

● an Many-Core ARM CPU…
● 48 compute cores + 2 or 4 assistant (OS) cores
● Brand new core design
● Near Xeon-Class Integer performance core
● ARM V8 --- 64bit ARM ecosystem
● Tofu-D + PCIe 3 external connection  

● …but also an accelerated GPU-like processor
● SVE 512 bit x 2 vector extensions (ARM & Fujitsu)

● Integer (1, 2, 4, 8 bytes) + Float (16, 32, 64 bytes)
● Cache + scratchpad-like local memory (sector cache)
● HBM2 on package memory – Massive Mem BW (Bytes/DPF ~0.4)

● Streaming memory access, strided access, scatter/gather etc.
● Intra-chip barrier synch. and other memory enhancing features 

● GPU-like High performance in HPC, AI/Big Data, Auto Driving…

Post-K Activities, ISC19, Frankfurt Copyright 2019 FUJITSU LIMITED

“Fugaku” CPU Performance Evaluation (2/3)

■ Himeno Benchmark (Fortran90)
■ Stencil calculation to solve Poisson’s equation by Jacobi method

† “Performance evaluation of a vector supercomputer SX-aurora
TSUBASA”,
 SC18, https://dl.acm.org/citation.cfm?id=3291728

G
Fl

op
s

† †

�12

Post-K Activities, ISC19, Frankfurt Copyright 2019 FUJITSU LIMITED

“Fugaku” CPU Performance Evaluation (3/3)
■ WRF: Weather Research and Forecasting model
■ Vectorizing loops including IF-constructs is key optimization
■ Source code tuning using directives promotes compiler optimizations

ｘ
ｘ

�13

© 2019 FUJITSU�14

A64FX: Tofu interconnect D
■ Integrated w/ rich resources
■ Increased TNIs achieves higher injection BW & flexible comm. patterns
■ Increased barrier resources allow flexible collective comm. algorithms

■ Memory bypassing achieves low latency
■ Direct descriptor & cache injection

TofuD spec
Port bandwidth 6.8 GB/s
Injection bandwidth 40.8 GB/s

Measured
Put throughput 6.35 GB/s
Ping-pong latency 0.49~0.54 µs

c
c
c
c

c c
c
c

c
c
c
cc

$ Coherent NOC

HBM2
CMG

c
c
c
c

c c
c
c

c
c
c
cc

HBM2
CMG

c
c
c
c

c c
c
c

c
c
c
cc

HBM2
CMG

c
c
c
c

c c
c
c

c
c
c
cc

HBM2
CMG

PCle

A64FX

TNI0

TNI1
TNI2
TNI3
TNI4
TNI5 To

fu
 N

et
w

or
k

R
ou

te
r

2
la

ne
s
×

10
 p

or
ts

TofuD

Overview of Fugaku System & Storage

 15

● 3-level hierarchical storage
● 1st Layer: GFS Cache + Temp FS (25~30 PB NVMe)
● 2nd Layer: Lustre-based GFS (a few hundred PB HDD)
● 3rd Layer: Off-site Cloud Storage

● Full Machine Spec
● >150,000 nodes  

~8 million High Perf. Arm v8.2 Cores
● > 150PB/s memory BW
● Tofu-D 10x Global IDC traffic @ 60Pbps
● ~10,000 I/O fabric endpoints
● > 400 racks
● ~40 MegaWatts Machine+IDC  

PUE ~ 1.1 High Pressure DLC
● NRE pays off: ~= 15~30 million  

state-of-the art competing CPU  
Cores for HPC workloads  
(both dense and sparse problems)

　 PostK K

Peak DP
(double precision)

>400+ Pflops
(34x +) 11.3 Pflops

Peak SP
(single precision)

>800+ Pflops
(70x +) 11.3 Pflops

Peak HP
(half precision)

>1600+ Pflops
(141x +) --

Total memory
bandwidth

>150+ PB/sec
(29x +) 5,184TB/sec

Categor
y Priority Issue Area Performance

Speedup over K Application Brief description

Health
and

longevity

1. Innovative computing
infrastructure for drug discovery 125x + GENESIS MD for proteins

2. Personalized and preventive
medicine using big data 8x + Genomon Genome processing

(Genome alignment)

Disaster
preventio

n and
Environm

ent

3. Integrated simulation
systems induced by earthquake
and tsunami 45x + GAMERA Earthquake simulator (FEM in

unstructured & structured grid)

4. Meteorological and global
environmental prediction using
big data

120x + NICAM+
LETKF

Weather prediction system using
Big data (structured grid stencil &

ensemble Kalman filter)

Energy
issue

5. New technologies for energy
creation, conversion / storage,
and use 40x + NTChem Molecular electronic simulation

(structure calculation)

6. Accelerated development of
innovative clean energy
systems

35x + Adventure
Computational Mechanics System

for Large Scale Analysis and
Design (unstructured grid)

Industrial
competiti
veness

enhance
ment

7. Creation of new functional
devices and high-performance
materials

30x + RSDFT Ab-initio simulation
 (density functional theory)

8. Development of innovative
design and production
processes 25x + FFB Large Eddy Simulation

(unstructured grid)

Basic
science

9. Elucidation of the
fundamental laws and evolution
of the universe

25x + LQCD Lattice QCD simulation
(structured grid Monte Carlo)

Fugaku Performance Estimate on 9 Co-Design Target Apps

! Performance target goal

! Peak performance to be achieved

✓ 100 times faster than K for some
applications (tuning included)

✓ 30 to 40 MW power consumption

As of 2019/05/14

! Geometric Mean of Performance
Speedup of the 9 Target Applications
over the K-Computer

> 37x+

Fugaku Programming Environment

 17

● Programing Languages and Compilers provided by
Fujitsu
● Fortran2008 & Fortran2018 subset
● C11 & GNU and Clang extensions
● C++14 & C++17 subset and GNU and Clang extensions
● OpenMP 4.5 & OpenMP 5.0 subset
● Java

● Parallel Programming Language & Domain Specific
Library provided by RIKEN
● XcalableMP
● FDPS (Framework for Developing Particle Simulator)

● Process/Thread Library provided by RIKEN

● PiP (Process in Process)

● Script Languages provided by Linux distributor
● E.g., Python+NumPy, SciPy

● Communication Libraries
● MPI 3.1 & MPI4.0 subset

● Open MPI base (Fujitsu), MPICH (RIKEN）

● Low-level Communication Libraries
● uTofu (Fujitsu), LLC(RIKEN）

● File I/O Libraries provided by RIKEN
● Lustre
● pnetCDF, DTF, FTAR

● Math Libraries
● BLAS, LAPACK, ScaLAPACK, SSL II （Fujitsu）
● EigenEXA, Batched BLAS （RIKEN）

● Programming Tools provided by Fujitsu
● Profiler, Debugger, GUI

● NEW: Containers (Singularity) and other Cloud APIs
● NEW: AI software stacks (w/ARM)
● NEW: DoE Spack Package Manager

GCC and LLVM will be also
available

 18

● Industry use of Fugaku via
intermediary cloud SaaS
vendors, Fugaku as IaaS

● A64fx and other Fugaku
Technology being incorporated
into the Cloud

Fugaku Cloud Strategy

HPC SaaS  
Provider 1

HPC SaaS  
Provider 2

HPC SaaS  
Provider 3

Industry
User 1

Industry
User 2

Industry
User 3

Various Cloud
Service API for

HPC

Other
IaaS  

Commerc
ial Cloud

Extreme
Performance
Advantage

KVM/Singularity,
Kubernetes, etc.

Cloud
Vendor 1

Cloud
Vendor 2

Cloud
Vendor 3

Cloud Workload
Becoming HPC (including

AI)
↓

Significant Performance
Advantage

↓
Millions of Units shipped

to Cloud
↓

Rebirth of JP

富岳

 19

A64fx in upcoming Stony Brook Cray System

Pursuing Convergence of HPC & AI (1)

 20

● Acceleration of Simulation (first principles methods) with AI
(empirical method) : AI for HPC
● Interpolation & Extrapolation of long trajectory MD
● Reducing parameter space on Paretho optimization of results
● Adjusting convergence parameters for iterative methods etc.
● AI replacing simulation when exact physical models are unclear, or

excessively costly to compute
● Acceleration of AI with HPC: HPC for AI
● HPC Processing of training data -data cleansing
● Acceleration of (Parallel) Training: Deeper networks, bigger training

sets, complicated networks, high dimensional data…
● Acceleration of Inference: above + real time streaming data
● Various modern training algorithms: Reinforcement learning, GAN,

Dilated Convolution, etc.

R-CCS Pursuit of Convergence of HPC & AI (2)

 21

● Acceleration of Simulation (first principles methods) with AI (empirical
method) : AI for HPC
● Most R-CCS research & operations teams investigating use of AI for HPC
● 9 priority co-design issues area teams also extensive plans
● Essential to deploy AI/DL frameworks efficiently & at scale on A64fx/Fugaku

● Acceleration of AI with HPC: HPC for AI
● New teams instituted in Science of Computing to accelerate AI

● Kento Sato (High Performance Big Data Systems)
● Satoshi Matsuoka (High Performance AI Systems)
● Masaaki Kondo Next Gen (High Performance Architecture)

● NEW: Optimized AI/DL Library via port of DNNL (MKL-DNN)
● Arm Research + Fujitsu Labs + Riken R-CCS + others
● First public ver. by Mar 2020, TensorFlow, PyTorch, Chainer, etc.

Large Scale simulation and AI coming together  
[Ichimura et. al. Univ. of Tokyo, IEEE/ACM SC17 Best Poster  
2018 Gordon Bell Finalist] 

130 billion freedom
earthquake of entire Tokyo
on K-Computer (2018 ACM
Gordon Bell Prize Finalist,
SC16,17 Best Poster)

 22Too Many Instances
Earthquake

Soft Soil <100m

？ Candidate
Underground
Structure 1

Candidate
Underground
Structure 2

AI Trained by Simulation to
generate candidate soft soil
structure

Convergence of HPC & AI in Modsim

 23

● Performance modeling and prediction with AI (empirical
method) AI for modsim of HPC systems
● C.f. GEM5 simulation – first principle perf. modeling
● AI Interpolation & Extrapolation of system performance
● Objective categorization of benchmarks
● Optimizing system performance using machine learning

● Performance Modeling of AI esp. Machine Learning HPC modsim
techniques for AI
● Perf. modeling of Deep Neural Networks on HPC machines
● Large scaling of Deep Learning on large scale machines
● Optimization of AI algorithms using perf modeling
● Architectural survey and modeling of future AI systems

Deep Learning Meets HPC 
6 orders of magnitude compute increase in 5 years 

[Slide Courtesy Rick Stevens @ ANL]

Exascale Needs for Deep
Learning
• Automated Model Discovery
• Hyper Parameter Optimization
• Uncertainty Quantification
• Flexible Ensembles
• Cross-Study Model Transfer
• Data Augmentation
• Synthetic Data Generation
• Reinforcement Learning

Exaop/s-day

4 Layers of Parallelism in DNN Training
• Hyper Parameter Search

• Searching optimal network configs & parameters
• Parallel search, massive parallelism required

• Data Parallelism
• Copy the network to compute nodes, feed different batch data, average =>

network reduction bound
• TOFU: Extremely strong reduction, x6 EDR Infiniband

• Model Parallelism (domain decomposition)
• Split and parallelize the layer calculations in propagation
• Low latency required (bad for GPU) -> strong latency tolerant cores + low latency

TOFU network
• Intra-Chip ILP, Vector and other low level Parallelism

• Parallelize the convolution operations etc.
• SVE FP16+INT8 vectorization support + extremely high memory bandwidth w/

HBM2

• Post-K could become world’s biggest & fastest platform for DNN
training!

 25

Intra-Node

Inter-Node

Massive amount of
total parallelism,
only possible via
supercomputing

 26

Fugaku Processor
◆High perf FP16&Int8
◆High mem BW for convolution
◆Built-in scalable Tofu network

Unprecedened DL scalability

High Performance DNN Convolution

Low Precision ALU + High Memory Bandwidth +
Advanced Combining of Convolution Algorithms
(FFT+Winograd+GEMM)

High Performance and Ultra-Scalable Network  
for massive scaling model & data parallelism

Unprecedented Scalability of Data/

Massive Scale Deep Learning on Fugaku

C P U
For the

Fugaku
supercomputer

C P U
For the

Fugaku
supercomputer

C P U
For the

Fugaku
supercomputer

C P U
For the

Fugaku
supercomputer

TOFU Network w/
high injection BW
for fast  
reduction

© 2019 FUJITSU�27

A64FX technologies: Core performance
■ High calc. throughput of Fujitsu’s original CPU core w/ SVE
■ 512-bit wide SIMD x 2 pipelines and new integer functions

A0 A1 A2 A3

B0 B1 B2 B3
X X X X

8bit 8bit 8bit 8bit

C

32bit

INT8 partial dot product

 28

“Isopower” Comparsion with the Best GPU

NVIDIA Volta v100 Fujitsu A64fx (2 A0 chip nodes)

Power 400 W (incl. CPUs, HCAs DGX-1) “similar”

Vectorized MACC Formats FP 64/32/16, INT 32(?) FP 64/32/16, INT 32/16/8 w/INT32
MACC

Multi-node Linpack 5.9 TF / chip (DGX-1) > 5.3 TF / 2 chip blade

Flops/W Linpack 15.1 GFlops/W (DGX-2) > 15 Glops/W

Stream Triad 855 GB/s 1.68 TB / s

Memory Capacity 16 / 32 GB 64 GB (32 x 2)

AI Performance 125 (peak) / ~95 (measured)
Tflops FP16 Tensor Cores

~48 TOPS (INT8 MACC peak)

Price ~$11,000 (SXM2 32GB board
only)  

~$13,000 (DGX-1, per 16GB GPU)

Talk to Fujitsu ☺

 29

Large Scale Public AI Infrastructures in Japan
Deployed Purpose AI Processor Inference  

Peak Perf.
Training 

Peak Perf.
Top500  

Perf/Rank
Green500  
Perf/Rank

Tokyo Tech.
TSUBAME3

July
2017

HPC + AI  
Public

NVIDIA P100  
x 2160

45.8 PF
(FP16)

22.9 PF / 45.8PF  
(FP32/FP16)

8.125 PF
#22

13.704 GF/W 
#5

U-Tokyo  
Reedbush-H/

L

Apr.
2018  

(update)

HPC + AI  
Public

NVIDIA P100  
x 496

10.71 PF  
(FP16)

5.36 PF /
10.71PF  

(FP32/FP16)

(Unranked
)

(Unranked)

U-Kyushu
ITO-B

Oct.
2017

HPC + AI  
Public

NVIDIA P100  
x 512

11.1 PF  
(FP16)

5.53 PF/11.1 PF  
(FP32/FP16)

(Unranked
)

(Unranked)

AIST-AIRC
AICC

Oct.
2017

AI  
Lab Only

NVIDIA P100  
x 400

8.64 PF
(FP16)

4.32 PF / 8.64PF  
(FP32/FP16)

0.961 PF
#446

12.681 GF/W 
#7

Riken-AIP
Raiden

Apr.
2018  

(update)

AI  
Lab Only

NVIDIA V100  
x 432

54.0 PF  
(FP16)

6.40 PF/54.0 PF  
(FP32/FP16)

1.213 PF  
#280

 11.363 GF/
W

#10

AIST-AIRC
ABCI

Aug.
2018

AI  
Public

NVIDIA V100  
x 4352

544.0 PF
(FP16)

65.3 PF/544.0
PF  

(FP32/FP16)

19.88 PF
#7

14.423 GF/W 
#4

NICT
(unnamed)

Summer  
2019

AI
Lab Only

NVIDIA V100
x 1700程度

~210 PF
(FP16)

~26 PF/~210 PF  
(FP32/FP16)

???? ????

C.f. US
ORNL 

Summit

Summer  
2018

HPC + AI  
Public

NVIDIA V100  
x 27,000

3,375 PF  
(FP16)

405 PF/3,375 PF  
(FP32/FP16)

143.5 PF  
#1

14.668 GF/W 
#3

Riken R-CCS 2020   HPC + AI   Fujitsu A64fx   > 4000 PO   >1000PF/ > 400PF   > 15 GF/W 

Inference  
838.5PF 
Training 
86.9 PF

vs. Summit  
Inf. 1/4  
Train. 1/5

Predicting Statistics of Asynchronous SGD Parameters for a Large-
Scale Distributed Deep Learning System on GPU Supercomputers

Background

• In large-scale Asynchronous Stochastic Gradient Descent
(ASGD), mini-batch size and gradient staleness tend to
be large and unpredictable, which increase the error of
trained DNN

Objective function E

W(t)
-ηΣi ∇Ei

W(t+1)
W(t+1)

-ηΣi ∇Ei

W(t+3)

W(t+2)

Twice asynchronous
updates within

gradient computation

Staleness=0

Staleness=2

DNN parameters space

Mini-batch size

(NSubbatch: # of samples per one GPU iteration)

Mini-batch size Staleness

Measured

Predicted

4 nodes
8 nodes

16 nodes Measured
Predicted

Proposal
• We propose a empirical performance model for an ASGD

deep learning system SPRINT which considers probability
distribution of mini-batch size and staleness

• Yosuke Oyama, Akihiro Nomura, Ikuro Sato, Hiroki Nishimura, Yukimasa Tamatsu, and Satoshi Matsuoka, "Predicting
Statistics of Asynchronous SGD Parameters for a Large-Scale Distributed Deep Learning System on GPU
Supercomputers", in proceedings of 2016 IEEE International Conference on Big Data (IEEE BigData 2016), Washington
D.C., Dec. 5-8, 2016

Pushing the Limits for 2D Convolution Computation On GPUs  
[To appear SC19]• Background of 2D convolution

• Convolution on CUDA-enabled GPUs is essential for Deep Learning workload
• A typical memory-bound problem with regular access

�� ⋯
⋯

⋯
⋯

⋯
⋯

Th
re

ad
 31

∗ ⋯
⋯

⋯

𝑤1 𝑤2 𝑤𝑀𝑣1
𝑣2

𝑣𝐶

𝑀 × 𝑁 𝑠 𝑖 𝑧 𝑒 𝑓 𝑖 𝑙 𝑡 𝑒 𝑟32 × 𝐶 𝑅 𝑒 𝑔 𝑖 𝑠 𝑡 𝑒 𝑟 𝑀 𝑎 𝑡 𝑟 𝑖 𝑥　

𝑣𝑁
�⋯⋯⋯⋯ ⋯

Sliding Window

A CUDA Warp

Th
re

ad
 0

Th
re

ad
 1

Th
re

ad
 2

Th
re

ad
 3

Th
re

ad
 4

Th
re

ad
 5

Th
re

ad
 30

𝑠1

𝑠2

𝑠𝑁

𝑠3

𝑠1

𝑠2

𝑠𝑁

𝑠3

𝑠1

𝑠2

𝑠𝑁

𝑠3

𝑣1

𝑣2

⋯

𝑠1

𝑠2

𝑠𝑁

A CUDA thread

⋯

𝑤

𝑣𝑁

𝑣

 𝑠𝑢 𝑚𝑘 ← 𝑣𝑘 × 𝑠𝑘 + 𝑠𝑢 𝑚𝑘−1

(2) Compute partial sums(1) Register Cache

e0 e1 e2 e4 e5 e6 e30

e0 e1 e3 e4 e5 e6 e30 e31

e0 e1 e3 e4 e5 e6 e30 e31

#1

+ + + + + + +

++++++

�� ⋯
⋯

⋯
⋯

⋯
⋯#2

#3

Th
re

ad
 0

A CUDA Warp

Convolution Results

e31
+

+

Th
re

ad
 1

Th
re

ad
 2

Th
re

ad
 3

Th
re

ad
 4

Th
re

ad
 5

Th
re

ad
 30

Th
re

ad
 31

Evaluation on Tesla P100 GPU

• Method

(3) Transfer partial sums

• Evaluation
• a single Tesla P100 and

V100 GPUs
• Single precision

Evaluation on Tesla V100 GPU
[1] Peng Chen, Mohamed Wahib, Shinichiro Takizawa, Satoshi Matsuoka. Pushing the Limits for 2D Convolution Computation On CUDA-enabled GPUs.
第163回ハイパフォーマンスコンピューティング研究会, Mar. 2018.

[1]

Also applicable to vector processor
with shuffle ops, e.g. A64FX

Applying Loop Transformations/Algorithm Optimizations to Deep Learning Kernels on cuDNN [1] and ONNX [2]

• Motivation: How can we use faster convolution
algorithms (FFT and Winograd) with a small
workspace memory for CNNs?

• Proposal: μ-cuDNN, a wrapper library for cuDNN,
which applies loop splitting to convolution kernels
based on DP and integer LP techniques

• Results: μ-cuDNN achieves significant speedups in
multiple levels of deep learning workloads, achieving
1.73x of average speedups for DeepBench's 3×3
kernels and 1.45x of speedup for AlexNet on Tesla
V100

✗ Slow
✓ Small memory footprint

✓ Fast
✗ Large memory footprint

Convolution algorithms supported by cuDNN
[1] Yosuke Oyama, Tal Ben-Nun, Torsten Hoefler, Satoshi Matsuoka, Accelerating Deep Learning Frameworks with Micro-batches, In proceedings of IEEE Cluster 2018, Belfast UK, Sep. 10-13, 2018.
[2] (To appear) Yosuke Oyama, Tal Ben-Nun, Torsten Hoefler, Satoshi Matsuoka, Applying Loop Transformations to Deep Neural Networks on ONNX, 情報処理理学会研究報告, 2019-HPC-170. In 並列列/分散/協調処理理に
関するサマーワークショップ (SWoPP2019), Jul. 24-26, 2019.

• Motivation: How can we extend μ-cuDNN to
support arbitrary types of layers, frameworks
and loop dimensions?

• Proposal: Apply graph transformations on the
top of the ONNX (Open Neural Network
eXchange) format

• Results: 1.41x of speedup for AlexNet on
Chainer only with graph transformation and
Squeezing 1.2x of average speedup for
DeepBench's 3x3 kernels by multi-level splitting

AlexNet before/after the transformation

Graph transformation
(loop splitting) to an

ONNX graph

55.7 ms
(Forward)

39.4 ms
(Forward)

μ-cuDNN: Accelerating Deep Learning Frameworks with Micro-batches [1]

• Motivation: How can we use faster convolution algorithms (ex. FFT and Winograd) with a small
workspace memory for Convolutional Neural Networks (CNNs)?

• Proposal: μ-cuDNN, a wrapper library for the math kernel library cuDNN which is applicable for most
deep learning frameworks

• μ-cuDNN applies loop splitting by using dynamic programming and integer linear programming techniques

• Results: μ-cuDNN achieves significant speedups in multiple levels of deep learning workloads
• 1.16x, 1.73x of average speedups for DeepBench's 3×3 kernels on Tesla P100 and V100 respectively
• achieves 1.45x of speedup (1.60x w.r.t. convolutions alone) for AlexNet on V100
✗ Slow
✓ Small memory
 footprint

✓ Fast
✗ Large memory
 footprint

Relative speedups of DeepBench’s forward convolution layers against
cuDNNConvolution algorithms supported by cuDNN

[1] Yosuke Oyama, Tal Ben-Nun, Torsten Hoefler, Satoshi Matsuoka, Accelerating Deep Learning Frameworks with Micro-batches, In proceedings of IEEE Cluster 2018, Belfast UK, Sep. 10-13, 2018.

Training ImageNet in Minutes

TSUBAME3.
0

ABC
I

Source Ben-nun & Hoefler https://arxiv.org/pdf/
1802.09941.pdf

Rio Yokota, Kazuki Osawa,Yohei Tsuji,Yuichiro Ueno, Hiroki Naganuma, Shun Iwase, Kaku
Linsho, Satoshi Matsuoka Tokyo Institute of Technology/Riken + Akira Naruse (NVIDIA)

#GPU time

Facebook 512 30 min

Preferred Networks 1024 15 min
UC Berkeley 2048 14 min

Tencent 2048 6.6 min
Sony (ABCI) ~3000 3.7 min

Google (TPU/GCC) 1024 2.2 min

TokyoTech/NVIDIA/Riken
(ABCI) 4096 ? min

Accelerating DL with 2nd Order Optimization and Distributed Training [Tsuji et al.] =>
Towards 100,000 nodes scalability

▪ Background
• Large complexity of DL training.
• Limits of data-parallel distributed

training.
• > How to accelerate the training

further?

▪ Method
• Integration of two techniques: 1)

data- and model-parallel distributed
training, and 2) K-FAC, an approx 2nd
order optimization.

▪ Evaluation and Analysis
• Experiments on ABCI supercomputer.
• Up to 128K batch size w/o accuracy

degradation.
• Finish training in 35 epochs/10 min/

1024 GPUs in 32K batch size.
• A performance tuning / modeling.

Osawa et al., Large-Scale Distributed Second-Order Optimization Using Kronecker-Factored Approximate Curvature for Deep
Convolutional Neural Networks, CVPR 2019

Time prediction with the performance model

Data-parallel Model-parallel

Design our hybrid parallel distributed K-FAC

Batch size # Iterations Accuracy

Goyal et al. 8K 14076 76.3%

Akiba et al. 32K 3519 75.4%

Ying et al. 64K 1760 75.2%

Ours 128K 978 75.0%

Comparison with related work (ImageNet/ResNet-50)

Fast ImageNet Training

!36
0 5 10 15 20 25 30

Training time (min)

0

1000

2000

3000

4000
N

um
be

r o
f G

PU
/T

PU
/K

N
L

Facebook
PFN

Tencent

Sony

Google

This work (old)

This work (new)

Nov 2018

Target

Nvidia’s Collective Comm. Library (NCCL) Tests

● benchmark GPU collectives for DL frameworks which
use NCCCL as backend

● Example visualization:

 
 
 
 

 
Others:  
 - Tensorflow’s allreduce benchmark (see  
 Tf_cnn_benchmarks for details; needs very recent TF)  
 - PFN has benchmark/data for ChainerMN / PFN-Proto  
 (see their blogpost; unknown if open-source)

Fig. from Nvidia Devblog

Our measurements (following DeepBench specs) for
Interconnect on Tsubame 2.5 and K computer

Baidu’s Allreduce Benchmark

● hardcoded 
steps: 
0B→2GiB

● hardcoded 
#iterations 
per msg size

● GPU/Cuda-dependency  
easily removable if necessary

Our “sleepy-allreduce” (modified Intel IMB)

● emulated DL training
● alternating 400MiB 

Allreduce and 0.1s 
sleep for compute

Common/Generic Interconnect Benchmarks

Intel MPI Benchmarks (IMB)

● IMB and OSU benchmarks very similar
● testing many P2P, collectives, MPI-I/O functions
● Default comm. size range from 0B→4MiB

(power-2 steps; can be modified manually)
● MPI-Allreduce example for K:

OSU Micro-Benchmarks (from Ohio-State Univ)

● MPI collectives relevant for DL training + p2p BMs:

 
 
 
 
 
 

 
Many other, less common MPI (micro-)benchmarks: 
 - Netgauge (for eff. bisection bandwidth & other patterns) 
 - BenchIT suite (incl. MPI BMs; more fine-granular steps) 
 - SPEC MPI2007 (more application-centric)  
 - etc.

[1] P. Goyal, P. Doll´ar, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia, and K. He,
“Accurate, large minibatch SGD: training imagenet in 1 hour,” arXiv preprint arXiv:1706.02677, 2017.
[2] Y. You, Z. Zhang, C. Hsieh, J. Demmel, and K. Keutzer, “Imagenet training in minutes,” CoRR, abs/
1709.05011, 2017.

➢ Reducing training time of large-scale AI/DL on GPUs-system.
➢ Time for inference = O(seconds)
➢ Time for training = O(hours or days)

➢ Computation is one of the bottleneck factors
➢ Increasing the batch size and learning in parallel

➢ Training ImageNet in 1 hour [1]
➢ Training ImageNet in ~20 minutes [2]

➢ Communication also can become a bottleneck
➢ Due to large message sizes

Optimizing Collective Communication in DL Training (1 of 3)

Model AlexNet
(2012)

GoogleNet
(2015)

ResNet
(2016)

DenseNet
(2017)

of gradients [1] 61M 5.5M 1.7 – 60.2M 15.3 – 30M

Message size 244 MB 22MB 240 MB 120 MB

Huge message size
(~100MB – 1GB)

[1] T. Ben-Nun and T. Hoefler, “Demystifying parallel and distributed deep learning: An in-depth concurrency
analysis,” arXiv preprint arXiv:1802.09941, 2018.

Example of Image Classification, ImageNet data set

Optimizing Collective Communication in DL Training (2 of 3)  
(Challenges of Large Message Size)

�41

➢ Phase 1: Intra-node reduce to the node leader
➢ Phase 2: Inter-node all-reduce between leaders
➢ Phase 3: Intra-node broadcast from the leaders
Key Results:

➢ Cut down the communication time up to 51%
➢ Reduce the power consumption up to 32%

Proposal: Separate intra-node and inter-node comm. ➔ multileader hierarchical algorithm

Multileader hierarchical algorithm
• Optimized for inter-node comm.

Ring-based algorithm
▪ Good for large message size
▪ Worse with inter-node comm.

2(P-1) steps, send ! per step
𝑁
𝑃

2(! -1) steps, ! per step
𝑃
𝑘

𝑁 (𝑝 − 𝑘)

𝑃 𝑘

"Efficient MPI-Allreduce for Large-Scale Deep Learning on GPU-Clusters", Truong Thao Nguyen, Mohamed Wahib, Ryousei Takano, Journal
of Concurrency and Computation: Practice and Experience (CCPE) , Accepted: to appear in 2019.10

Optimizing Collective Communication in DL Training (3 of 3)

Jens
Domke

1st large-scale Prototype – Motivation for  
HyperX

Theoretical Advantages (over Fat-Tree)
● Reduced HW cost (less AOC / SW)
● Only needs 50% bisection BW

 42

 Full marathon worth of IB and  
 ethernet cables re-deployed

 
 Multiple tons of  
 equipment moved around

 
 1st rail (Fat-Tree) maintenance 
 
 Full 12x8 HyperX constructed

 
 And much more … 
 - PXE / diskless env ready  
 - Spare AOC under the floor 
 - BIOS batteries exchanged
 
➔ First large-scale 2.7 Pflop/s
(DP) 
 HyperX installation in the world!

Fig.1: HyperX with n-dim. integer lattice
(d1,…,dn) base structure
fully connected in each dim.

TokyTech’s 2D HyperX:
● 24 racks (of 42 T2 racks)
● 96 QDR switches (+ 1st rail)

without adaptive routing
● 1536 IB cables (720 AOC)
● 672 compute nodes
● 57% bisection bandwidth

Fig.2: Indirect 2-level Fat-Tree

● Lower latency (less hops)
● Fits rack-based packaging

Jens
Domke

1:1 comparison (as fair as possible) of  
672-node 3-level Fat-Tree and 12x8 2D HyperX
● NICs of 1st and 2nd rail even on same CPU socket
● Given our HW limitations (few “bad” links disabled)

Wide variety of benchmarks and configurations
● 3x Pure MPI benchmarks
● 9x HPC proxy-apps
● 3x Top500 benchmarks
● 4x routing algorithms (incl. PARX)
● 3x rank-2-node mappings
● 2x execution modes

Primary research questions
Q1: Will reduced bisection BW 
 (57% for HX vs. ≥100% for FT)  
 impede performance?
Q2: Two mitigation strategies 
 against lack of AR? (" e.g. 
 placement vs. “smart” routing)

Evaluating the HyperX and Summary

 43

Fig.4: Baidu’s (DeepBench) Allreduce (4-byte float) scaled 7" 672 cn (vs. “Fat-tree / ftree / linear” baseline)

Greener is
better

1. Placement mitigation can alleviate bottleneck
2. HyperX w/ PARX routing outperforms FT in HPL
3. Linear good for small node counts/msg. size
4. Random good for DL-relevant msg. size (! 1%)
5. “Smart” routing suffered SW stack issues
6. FT + ftree had bad 448-node corner case

+
−

3.

4.

5.

6.

Conclusion 
HyperX topology is
promising and
cheaper alternative to
Fat-Trees (even w/o
adaptive R) !

Fig.3: HPL (1GB pp, and 1ppn); scaled 7" 672 cn

Higher 
is better

1.

2.

Evaluating the HyperX Topology: A Compelling Alternative to Fat-Trees?[SC19]  

[1] Domke et al. “HyperX Topology: First at-scale Implementation and Comparison to the Fat-Tree” to be presented at SC’19 and HOTI’19

 Full marathon worth of IB and  
 ethernet cables re-deployed

 
 Multiple tons of 
 equipment moved around

 
 1st rail (Fat-Tree) maintenance  
 
 Full 12x8 HyperX constructed

 
 And much more … 
 - PXE / diskless env ready 
 - Spare AOC under the floor 
 - BIOS batteries exchanged
 
➔ First large-scale 2.7 Pflop/s
(DP) 
 HyperX installation in the
world!

 

Our 2D HyperX:
• 24 racks (of 42 T2 racks)
• 96 QDR switches (+ 1st rail)
• 1536 IB cables (720 AOC)
• 672 compute nodes
• 57% bisection bandwidth

1:1 comparison (as fair as possible) of 672-node 3-level Fat-Tree and 12x8 2D
HyperX
• NICs of 1st and 2nd rail even on same CPU socket
• Given our HW limitations (few “bad” links disabled)

Advantages (over FT) assuming adaptive routing (AR)
• Reduced HW cost (AOC/switches) " similar perf.
• Lower latency when scaling up (less hops)
• Fits rack-based packaging model for HPC/racks
• Only needs 50% bisection BW to provide 100% throughput for uniform random
 
Q1: Will reduced bisection BW (57% for HX vs. ≥100%) impede Allreduce
performance?
Q2: Mitigation strategies against lack of AR? (" eg. placement or smart
routing)

Fig.1: HyperX with n-dim. integer
lattice (d1,…,dn) base structure
fully connected in each dim.

Fig.2: Baidu’s (DeepBench) Allreduce (4-byte float) scaled 7"672 cn (vs. “Fat-tree / ftree / linear” baseline)

Greener is
better

 

1. Linear good for small node counts/msg. size
2. Random good for DL-relevant msg. size (1%)
3. Smart routing suffered SW stack issues
4. FT + ftree had bad 448-node corner case

+
−

1.

2.

3.

4.
 
 
 
 

 
 
HyperX topology 
is promising and 
cheaper alternative
to state-of-the-art  
Fat-Tree networks!

Funded by and in collaboration with Hewlett
Packard Enterprise, and supported by 
Fujitsu, JSPS KAKENHI, and JSP CREST

Motivation: GPU memory is relatively small in comparison to recent DL work load

Analysis:

Breaking the limitation of GPU memory for Deep Learning
Haoyu Zhang,Wahib Mohamed, Lingqi Zhang,Yohei Tsuji, Satoshi Matsuoka

Case Study & Discussion:
Memory Capacity:
● Not so important as latency

and throughput

Bandwidth:
● Higher connection

bandwidth
● Lower Memory bandwidth

 Latency:
● Higher Bandwidth make no

sense when buffer is too small
● Latency is decided by physical

law

Processor:
● Slower processor is

acceptable

Proposal： UM-Chainer
prefetch()->explicit swap-in 
no explicit swap-out

Breaking the limitation of GPU memory for Deep Learning
Haoyu Zhang,Wahib Mohamed, Lingqi Zhang,Yohei Tsuji, Satoshi Matsuoka

Breaking the limitation of GPU memory for Deep Learning
Haoyu Zhang,Wahib Mohamed, Lingqi Zhang,Yohei Tsuji, Satoshi Matsuoka

Assuming we have higher Bandwidth...

Resnet50,Batch-size=128

16GB/s->64GB/s: 
Training time can be half

64GB/s->128GB/s: 
Only a little time reduced

>128GB/s: 
Most of the layers can not make full
use of the bandwidth

>512GB/s: 
Time almost do not decrease

LLNL-PRES-XXXXXX

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Toward Training a Large 3D Cosmological
CNN with Hybrid Parallelization
The 1st Workshop on Parallel and Distributed Machine Learning 2019 (PDML’19) – Kyoto, Japan
Yosuke Oyama 1,2,*, Naoya Maruyama 2, Nikoli Dryden 3,2, Peter Harrington 4, Jan Balewski 4, Satoshi Matsuoka 5,1, Marc Snir 3, Peter Nugent 4, and Brian Van Essen 2

1 Tokyo Institute of Technology, 2 Lawrence Livermore National Laboratory, 3 University of Illinois at Urbana-Champaign, 4 Lawrence Berkeley National Laboratory, 5 RIKEN Center for Computational Science, * oyama.y.aa@m.titech.ac.jp

August 5, 2019

mailto:oyama.y.aa@m.titech.ac.jp

Background

CosmoFlow [1] is a project to estimate cosmological parameters from 3-dimensional
universe data by using a 3D CNN

CNN
53 GiB

,
m

σ8
,

Ω
⎨ ⎬
⎧ ⎫ ⎧

= 0.145

⎫0.242
⎨ − ⎬

⎩ n,s
⎭ ⎩ −0.489 ⎭

 Input Predict

Input
(4×512×512×512 voxels)

Output
(A vector of length 4)

Problem: GPU memory is too small to process high-resolution universe data
→ Another way to parallelize the model efficiently?

Background

Data-parallel training distributes data
samples among GPUs
✓ Good weak scalability (O(1000) GPUs)

 1.

2.

input conv

GPU 1

GPU 2

fc

 Back-prop.

All-reduce

 Back-prop.

Model-parallel training distributes the
computation of a single sample (model)
among GPUs
✓ Can use more GPUs per sample
✓ Can train larger models

input conv fc

GPU 1

Halo exchange

GPU 2

Data-parallelism + model-parallelism = Hybrid-parallelism

Proposal: Extending Distconv for 3D CNNs

LBANN + Distconv [2]: A parallelized stencil computation-like hybrid-parallel CNN
kernel library

Rank
M

em
or

y
 Read

GPU

0
1
2
3

Back-prop.

M
em

or
y

 Read

CPU GPU

 Shuffle 4
5
6
7

Conv.

Halo ex.
+ conv.

· · ·

 Shuffle Conv. FC
Back-prop.

CPU

Sample

exchange
Parameter gradients aggregation

(all-reduce)

Input

 Shuffle

conv1 · · ·

Conv.

Halo ex. · · ·
+ conv.

conv7 fc1,. . . ,3

 Shuffle Conv. FC

PFS
Preload

Evaluation: Weak scaling

D

Achieved 111x of speedup over 1
node by exploiting
hybrid-parallelism, even if
layer-wise communication is
introduced
The 8-way partitioning is 1.19x
of 4-way partitioning with a
mini-batch size of 64

W W W

H H H

D D
4-way 8-way 2 × 2-way

Sp
ee

d
[s

am
pl

es
/s

]

101

102

.19x1

2 × 2-way (Synthetic)
4-way (Synthetic)
8-way (Synthetic)

1 2 4 8 16 32 64 128

Number of nodes

Figure: Weak scaling of the CosmoFlow network.

Evaluation: Strong scaling

Achieved 2.28x of speedup on 4 nodes (16 GPUs) compared to one node when N = 1
The scalability limit here is 8 GPUs, and the main bottleneck is input data loading

N
um

be
r o

f n
od

es

1

2

4

8

16

Seq. data load
Forward
Backward
Update

0.0 0.1 0.2

Time [s]
0.3 0.4

2.28x

Figure: Breakdown of the strong scaling experiment when N = 1.

Machine Learning Models for Predicting Job Run Time-Underestimation in HPC system [SCAsia 19]

▪ Motivation & Negative effects
1. When submitting a job, users need to estimate their job

runtime

2. If job runtime is underestimated by the users

3. Job will be terminated by HPC system upon reaching its
time limit

• Increasing time and financial cost for HPC users

• Wasting time and system resources.

• Hindering the productivity of HPC users and machines

▪ Method
• Apply machine learning to train models for predicting whether

the user has underestimated the job run-time

• Using data produced by TSUBAME 2.5

Guo, Jian, et al. "Machine Learning Predictions for Underestimation of Job Runtime on HPC System." Asian Conference on Supercomputing Frontiers. Springer,
2018

▪ Evaluating by Average Precision(AP)

▪ Evaluating by Simulation with
Saved-Lost Rate (SLR)

𝑆𝐿𝑅𝐶 =
𝑆𝑎𝑣 𝑒𝑑

𝐿 𝑜𝑠 𝑡 + 𝑃 𝑢 𝑛 𝑖𝑠h 𝑚 𝑒𝑛 𝑡
=

∑
𝑇𝑃
𝑡𝑝=1 (𝑗 . 𝑢 𝑠𝑒𝑑 _𝑤𝑎 𝑙𝑙𝑡 𝑖𝑚 𝑒 − 𝐶)𝑡𝑝

∑
𝑃
𝑝=1

𝑗 . 𝑢 𝑠𝑒𝑑 _𝑤𝑎 𝑙𝑙𝑡 𝑖𝑚 𝑒𝑝 + ∑
𝐹𝑃
𝑓𝑝=1

𝐶𝑓𝑝

• Runtime-underestimated jobs can be predicted with
different accuracy and SLR at different checkpoint times

• Summing up the “Saved” time of all the applications at
best SLRs checkpoints, 24962 hours can be saved in total
with existing TSUBAME 2.5 data

• Helping HPC users to reduce time and financial loss
• Helping HPC system administrators free up computing

resources

Transistor Lithography Scaling
(CMOS Logic Circuits, DRAM/SRAM)

Loosely Coupled with Electronic Interconnect

Data Data

Hardware/Software System APIs
Flops-Centric Massively Parallel Architecture

Flops-Centric Monolithic System Software

Novel Devices + CMOS (Dark Silicon)
(Nanophotonics, Non-Volatile Devices etc.)

Ultra Tightly Coupled w/Aggressive  
3-D+Photonic Switching Interconnected

Hardware/Software System APIs
“Cambrian” Heterogeneous Architecture

Cambrian Heterogeneous System Software

Heterogeneous CPUs + Holistic Data

Data Data

Homogeneous General Purpose Nodes  
+ Localized Data

Reconfigurable  
Dataflow Optical  

ComputingDNN& 
Neuromorphic

Massive BW
3-D Package

Quantum 
ComputingLow Precision  

Error-Prone

Non-Volatile  
Memory

Flops-Centric Monolithic Algorithms and
Apps

Cambrian Heterogeneous Algorithms and
Apps

Compute
Nodes

Gen CPU Gen CPU

汎⽤用CPU Gen CPU

~2025  
M-P Extinction  

Event

Many Core Era
Post Moore
Cambrian Era

Compute
Nodes

Compute
Nodes

Compute
Nodes

R-CCS Strategies Towards Post-Moore Era
● Basic Research on Post-Moore

● Funded 2017: DEEP-AI CREST (Matsuoka)
● Funded 2018: NEDO 100x 2028 Processor Architecture (Matsuoka, Sano,

Kondo, SatoK)
● Funded 2019: Kiban-S Post-Moore Algorithms (NakajimaK etc.)
● Submitted: Neuromorphic Architecture (Sano etc. w/Riken AIP, Riken CBS

(Center for Brain Science))
● In preparation: Cambrian Computing (w/HPCI Centers)

● Author a Post-Moore Whitepaper towards Fugaku-next
● All-hands BoF last week at annual SWoPP workshop
● Towards official “Feasibility Study” towards Fugaku-next
● Similar efforts as K => Fugaku started in 2012

2028: Post-Moore Era
～2015 ~25 Years Post-Dennard,  

Many-core Scaling era

2016～Moore’s Law Slowing Down

2025～Post-Moore Era, end of transistor  
lithography (FLOPS) improvement

Research: Architectural investigation of perf. improvement ~2028
● 100x in 2028 c.f. mainstream high-end CPUs circa 2018 across applications

Key to performance improvement: from FLOPS to Bytes – data movement architectural
optimization

● CGRA – Coarse-Grained Reconfigurable Vector Dataflow
● Deep & Wide memory architecture w/advanced 3D packaging & novel memory devices
● All-Photonic DWM interconnect w/high BW, low energy injection
● Kernel-specific HW optimization w/low # of transistors & associated system software, programming, and

algorithms

Basic Research #1: NEDO 100x Processor

Towards 100x processor in 2028
● Various combinations of CPU architectures, new memory devices and 3-D technologies
● Perf. measurement/characterization/models for high-BW intra-chip data movement
● Cost models and algorithms for horizontal & hierarchical data movement
● Programming models and heterogeneous resource management

NEDO 100x Processor

12 Apr, 2019

2028 Strawman 100x  
Architecture

Future HPC & BD/AI Converged
Applications

100x BYTES-centric
architecture through

performance
simulations (R-CCS)

Heterogeneous &
High BW Vector CGRA
architecture (R-CCS)

High-Bandwidth
Hierarchical Memory

systems and their
management &

Programming (Tokyo Tech)

New programming
methodologies for

heterogeneous, high-
bandwidth systems

(Univ. Tokyo)
> 1TB NVM

Novel memory devices

10Tbps W
D

M
 N

etw
ork

