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● Satoshi Matsuoka 
● Director, RIKEN Center for Computational Science 
● 20191106 France-Germany-Japan Presentation @ Tokyo

The first “exascale” supercomputer 
Fugaku – HPC, BD & AI



R-CCS 
International core research center in the 
science of high performance computing 
(HPC)

Science of Computing by Computing for Computing
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● 1. Launching, Operating, and Improving ‘Fugaku’ – the first ‘Exascale’ 
Supercomputer for Simulation, Big Data and AI

● 2. Extreme improvements in convergence of HPC for AI
● Improving processor performance for inference & training
● Extreme data parallelism for extreme scaling
● Incorporating model parallelism for performance and ultra large neural 

networks
… and AI for HPC (challenges in apps & algorthms)

● 3. Big data with IoT and HPC convergence --- how to process data 
WITHOUT moving or storing them
● Not just traditional compression, filtering…

● 4. Post-Moore computing towards 2030s --- sustainable future for HPC, 
Big Data, and AI (and Fugaku-Next)

Challenges Ahead for R-CCS
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● 1. Launching, Operating, and Improving ‘Fugaku’ – the first ‘Exascale’ 
Supercomputer for Simulation, Big Data and AI

● 2. Extreme improvements in convergence of HPC for AI
● Improving processor performance for inference & training
● Extreme data parallelism for extreme scaling
● Incorporating model parallelism for performance and ultra large neural 

networks beyond 10s GByte
… and AI for HPC (challenges in apps & algorthms)

● 3. Big data with IoT and HPC convergence --- how to process data 
WITHOUT moving or storing them
● Not just traditional compression, filtering…

● 4. Post-Moore computing towards 2030s --- sustainable future for HPC, 
Big Data, and AI (and Fugaku-Next)

Challenges Ahead for R-CCS
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The ‘Fugaku’ Supercomputer, Successor to the K-
Computer 

Installation Dec. 2019~, operations early 2021



Broad Base --- Applicability & Capacity 
Broad Applications: Simulation, Data Science, AI, …  

Broad User Bae: Academia, Industry, Cloud Startups, …

H
igh-Peak --- A

cceleration of 
Large Scale A

pplication 
(C

apability)

Mt. Fuji representing 
the ideal of supercomputing

The Nex-Gen “Fugaku”  
富岳 Supercomptuer



Arm64fx & Fugaku 富岳 /Post-K are:
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● Fujitsu-Riken design A64fx ARM v8.2 (SVE), 48/52 core CPU
● HPC Optimized: Extremely high package high memory BW (1TByte/s), on-die Tofu-D 

network BW (~400Gbps), high SVE FLOPS (~3Teraflops), various AI support (FP16, 
INT8, etc.)

● Gen purpose CPU – Linux, Windows (Word), other SCs/Clouds
● Extremely power efficient – > 10x power/perf efficiency for CFD benchmark over 

current mainstream x86 CPU
● Largest and fastest supercomputer to be ever built circa 2020

● > 150,000 nodes, superseding LLNL Sequoia
● > 150 PetaByte/s memory BW
● Tofu-D 6D Torus NW, 60 Petabps injection BW (10x global IDC traffic)
● 25~30PB NVMe L1 storage
● The first ‘exascale’ machine (not exa64bitflops =>apps perf.)
● Acceleration of HPC, Big Data, and AI to extreme scale
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Brief History of R-CCS towards Fugaku

January 2006 
Next Generation Supercomputer 
Project (K Computer) start

July 2010 
RIKEN AICS established
August 2010 
HPCI Project start 
September 2010 
K computer installation starts 
First meeting of SDHPC (Post-K)

June 2011 
#1 on Top 500 
November 2011 
#1 on Top 500 > 10 Petaflops 
ACM Gordon Bell Award 
End of FY 2011 (March 2012)
SDHPC Whitepaper

2006

2010

2011

2012

2014

April 2012 
Post-K Feasibility Study start 
3 Arch Teams and 1 Apps Team
June 2012 
K computer construction complete
September 2012 
K computer production start 
November 2012 
ACM Gordon bell Award

April 2014 
Post-K project start 
June 2014 
#1 on Graph 500

April 2018 
AICS renamed to RIKEN R-CCS. 
Satoshi Matsuoka becomes new  
Director 
Aug 2018 
Arm A64fx announce at Hotchips
Oct 2018 
NEDO 100x processor project start 
Nov 2018 
Post-K Manufacturing approval by  
Prime Minister’s CSTI Committee

2018

March 2019 
Post-K  Manufacturing start 
May 2019 
Post-K named “Supercomputer Fugaku” 
July 2019 
Post-Moore Whitepaper start 
Aug 2019 
K Computer shutdown 
Dec 2019 
Fugaku installation start (planned)

20192013

End of FY2013 (Mar 2014)
Post-K Feasibility Study Reports



Co-Design Activities in Fugaku

● Extremely tight collabrations between the Co-Design apps centers, Riken, 
and Fujitsu, etc.

● Chose 9 representative apps as “target application” scenario
● Achieve up to x100 speedup c.f. K-Computer
● Also ease-of-programming, broad SW ecosystem, very low power, …

Multiple Activities since 2011

・9 Priority App Areas: High Concern to 
General Public: Medical/Pharma, 
Environment/Disaster, Energy,  
Manufacturing, …

Select representatives 
from 100s of 
applications signifying 
various computational 
characteristics

Design systems with 
parameters that consider 
various application 
characteristics

Science by 
Computing

Science of 
Computing

A 6 4 f x
For the 

Post-K 
supercomputer



Post-K Activities, ISC19, Frankfurt Copyright 2019 FUJITSU LIMITED

■ TSMC 7nm FinFET & CoWoS
■ Broadcom SerDes, HBM I/O, and 

SRAMs
■ 8.786 billion transistors
■ 594 signal pins

A64FX Leading-edge Si-technology
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Fugaku’s FUjitsu A64fx Processor is…
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● an Many-Core ARM CPU…
● 48 compute cores + 2 or 4 assistant (OS) cores
● Brand new core design
● Near Xeon-Class Integer performance core
● ARM V8 --- 64bit ARM ecosystem
● Tofu-D + PCIe 3 external connection  

● …but also an accelerated GPU-like processor
● SVE 512 bit x 2 vector extensions (ARM & Fujitsu)

● Integer (1, 2, 4, 8 bytes) + Float (16, 32, 64 bytes)
● Cache + scratchpad-like local memory (sector cache)
● HBM2 on package memory – Massive Mem BW (Bytes/DPF ~0.4)

● Streaming memory access, strided access, scatter/gather etc.
● Intra-chip barrier synch. and other memory enhancing features 

● GPU-like High performance in HPC, AI/Big Data, Auto Driving…



Post-K Activities, ISC19, Frankfurt Copyright 2019 FUJITSU LIMITED

“Fugaku” CPU Performance Evaluation (2/3)

■ Himeno Benchmark (Fortran90)
■ Stencil calculation to solve Poisson’s equation by Jacobi method

† “Performance evaluation of a vector supercomputer SX-aurora 
TSUBASA”,
    SC18,   https://dl.acm.org/citation.cfm?id=3291728

G
Fl

op
s

† †
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Post-K Activities, ISC19, Frankfurt Copyright 2019 FUJITSU LIMITED

“Fugaku” CPU Performance Evaluation (3/3)
■ WRF: Weather Research and Forecasting model
■ Vectorizing loops including IF-constructs is key optimization
■ Source code tuning using directives promotes compiler optimizations

ｘ
ｘ

�13
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A64FX: Tofu interconnect D
■ Integrated w/ rich resources
■ Increased TNIs achieves higher injection BW & flexible comm. patterns
■ Increased barrier resources allow flexible collective comm. algorithms

■ Memory bypassing achieves low latency
■ Direct descriptor & cache injection

TofuD spec
Port bandwidth 6.8 GB/s
Injection bandwidth 40.8 GB/s

Measured
Put throughput 6.35 GB/s
Ping-pong latency 0.49~0.54 µs
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Overview of Fugaku System & Storage
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● 3-level hierarchical storage
● 1st Layer: GFS Cache + Temp FS (25~30 PB NVMe)
● 2nd Layer: Lustre-based GFS (a few hundred PB HDD)
● 3rd Layer: Off-site Cloud Storage

● Full Machine Spec
● >150,000 nodes  

~8 million High Perf. Arm v8.2 Cores
● > 150PB/s memory BW
● Tofu-D 10x Global IDC traffic @ 60Pbps 
● ~10,000 I/O fabric endpoints
● > 400 racks
● ~40 MegaWatts Machine+IDC  

PUE ~ 1.1 High Pressure DLC
● NRE pays off: ~= 15~30 million  

state-of-the art competing CPU  
Cores for HPC workloads  
(both dense and sparse problems)



　 PostK K

Peak DP 
(double precision)

>400+ Pflops
(34x +) 11.3 Pflops

Peak SP 
(single precision)

>800+ Pflops
(70x +) 11.3 Pflops

Peak HP 
(half precision)

>1600+ Pflops
(141x +) --

Total memory 
bandwidth

>150+ PB/sec 
(29x +) 5,184TB/sec

Categor
y Priority Issue Area Performance 

Speedup over K Application Brief description

Health 
and 

longevity

1. Innovative computing 
infrastructure for drug discovery 125x + GENESIS MD for proteins

2. Personalized and preventive 
medicine using big data 8x + Genomon Genome processing 

(Genome alignment)

Disaster 
preventio

n and 
Environm

ent

3. Integrated simulation 
systems induced by earthquake 
and tsunami 45x + GAMERA Earthquake simulator (FEM in 

unstructured & structured grid)

4. Meteorological and global 
environmental prediction using 
big data

120x + NICAM+ 
LETKF

Weather prediction system using 
Big data (structured grid stencil & 

ensemble Kalman filter)

Energy 
issue

5. New technologies for energy 
creation, conversion / storage, 
and use 40x + NTChem Molecular electronic simulation 

(structure calculation)

6. Accelerated development of 
innovative clean energy 
systems

35x + Adventure
Computational Mechanics System 

for Large Scale Analysis and 
Design (unstructured grid) 

Industrial 
competiti
veness 

enhance
ment

7. Creation of new functional 
devices and high-performance 
materials

30x + RSDFT Ab-initio simulation 
 (density functional theory)

8. Development of innovative 
design and production 
processes 25x + FFB Large Eddy Simulation 

(unstructured grid)

Basic 
science

9. Elucidation of the 
fundamental laws and evolution 
of the universe

25x + LQCD Lattice QCD simulation 
(structured grid Monte Carlo)

Fugaku Performance Estimate on 9 Co-Design Target Apps

! Performance target goal

! Peak performance to be achieved

✓ 100 times faster than K for some 
applications (tuning included) 

✓ 30 to 40 MW power consumption

As of 2019/05/14

! Geometric Mean of Performance 
Speedup of the 9 Target Applications 
over the K-Computer

> 37x+



Fugaku Programming Environment
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● Programing  Languages and Compilers provided by 
Fujitsu
● Fortran2008 & Fortran2018 subset
● C11 & GNU and Clang extensions
● C++14 & C++17 subset and GNU and Clang extensions
● OpenMP 4.5 & OpenMP 5.0 subset
● Java

● Parallel Programming Language & Domain Specific 
Library provided by RIKEN
● XcalableMP
● FDPS (Framework for Developing Particle Simulator)

● Process/Thread Library provided by RIKEN 

● PiP (Process in Process)

● Script Languages provided by Linux distributor
● E.g., Python+NumPy, SciPy

● Communication Libraries
● MPI 3.1 & MPI4.0 subset

● Open MPI base (Fujitsu), MPICH (RIKEN）

● Low-level Communication Libraries
● uTofu (Fujitsu), LLC(RIKEN）

● File I/O Libraries provided by RIKEN
● Lustre
● pnetCDF, DTF, FTAR

● Math Libraries
● BLAS, LAPACK, ScaLAPACK, SSL II （Fujitsu）
● EigenEXA, Batched BLAS （RIKEN）

● Programming Tools provided by Fujitsu
● Profiler, Debugger, GUI

● NEW: Containers (Singularity) and other Cloud APIs
● NEW: AI software stacks (w/ARM)
● NEW: DoE Spack Package Manager

GCC and LLVM will be also 
available
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● Industry use of Fugaku via 
intermediary cloud SaaS 
vendors, Fugaku as IaaS

● A64fx and other Fugaku 
Technology being incorporated 
into the Cloud

Fugaku Cloud Strategy

HPC SaaS  
Provider 1

HPC SaaS  
Provider 2

HPC SaaS  
Provider 3

Industry 
User 1

Industry 
User 2

Industry 
User 3

Various Cloud 
Service API for 

HPC

Other 
IaaS  

Commerc
ial Cloud

Extreme 
Performance 
Advantage

KVM/Singularity, 
Kubernetes, etc.

Cloud 
Vendor 1

Cloud 
Vendor 2

Cloud 
Vendor 3

Cloud Workload 
Becoming HPC (including 

AI) 
↓ 

Significant Performance 
Advantage 

↓ 
Millions of Units shipped 

to Cloud 
↓ 

Rebirth of JP 

富岳
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A64fx in upcoming Stony Brook Cray System



Pursuing Convergence of HPC & AI (1)
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● Acceleration of Simulation (first principles methods) with AI 
(empirical method) : AI for HPC
● Interpolation & Extrapolation of long trajectory MD
● Reducing parameter space on Paretho optimization of results
● Adjusting convergence parameters for iterative methods etc.
● AI replacing simulation when exact physical models are unclear, or 

excessively costly to compute
● Acceleration of AI with HPC: HPC for AI
● HPC Processing of training data -data cleansing
● Acceleration of (Parallel) Training: Deeper networks, bigger training 

sets, complicated networks, high dimensional data…
● Acceleration of Inference: above + real time streaming data
● Various modern training algorithms: Reinforcement learning, GAN, 

Dilated Convolution, etc.



R-CCS Pursuit of Convergence of HPC & AI (2)
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● Acceleration of Simulation (first principles methods) with AI (empirical 
method) : AI for HPC
● Most R-CCS research & operations teams investigating use of AI for HPC
● 9 priority co-design issues area teams also extensive plans
● Essential to deploy AI/DL frameworks efficiently & at scale on A64fx/Fugaku  

● Acceleration of AI with HPC: HPC for AI
● New teams instituted in Science of Computing to accelerate AI

● Kento Sato (High Performance Big Data Systems)
● Satoshi Matsuoka (High Performance AI Systems)
● Masaaki Kondo Next Gen (High Performance Architecture)

● NEW: Optimized AI/DL Library via port of DNNL (MKL-DNN)
● Arm Research + Fujitsu Labs + Riken R-CCS + others
● First public ver. by Mar 2020, TensorFlow, PyTorch, Chainer, etc.



Large Scale simulation and AI coming together  
[Ichimura et. al. Univ. of Tokyo, IEEE/ACM SC17 Best Poster  
2018 Gordon Bell Finalist] 

130 billion freedom 
earthquake of entire Tokyo 
on K-Computer (2018 ACM 
Gordon Bell Prize Finalist, 
SC16,17 Best Poster)

 22Too Many Instances
Earthquake

Soft Soil <100m

？ Candidate 
Underground 
Structure 1

Candidate 
Underground 
Structure 2

AI Trained by Simulation to 
generate candidate soft soil 
structure



Convergence of HPC & AI in Modsim
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● Performance modeling and prediction with AI (empirical 
method) AI for modsim of HPC systems
● C.f. GEM5 simulation – first principle perf. modeling
● AI Interpolation & Extrapolation of system performance
● Objective categorization of benchmarks
● Optimizing system performance using machine learning

● Performance Modeling of AI esp. Machine Learning HPC modsim 
techniques for AI
● Perf. modeling of Deep Neural Networks on HPC machines
● Large scaling of Deep Learning on large scale machines
● Optimization of AI algorithms using perf modeling
● Architectural survey and modeling of future AI systems



Deep Learning Meets HPC 
6 orders of magnitude compute increase in 5 years 

[Slide Courtesy Rick Stevens @ ANL]

Exascale Needs for Deep 
Learning 
• Automated Model Discovery 
• Hyper Parameter Optimization 
• Uncertainty Quantification 
• Flexible Ensembles 
• Cross-Study Model Transfer 
• Data Augmentation 
• Synthetic Data Generation 
• Reinforcement Learning

Exaop/s-day



4 Layers of Parallelism in DNN Training
• Hyper Parameter Search 

• Searching optimal network configs & parameters 
• Parallel search, massive parallelism required 

• Data Parallelism 
• Copy the network to compute nodes, feed different batch data, average => 

network reduction bound 
• TOFU: Extremely strong reduction, x6 EDR Infiniband 

• Model Parallelism (domain decomposition) 
• Split and parallelize the layer calculations in propagation  
• Low latency required (bad for GPU) -> strong latency tolerant cores + low latency 

TOFU network 
• Intra-Chip ILP, Vector and other low level Parallelism 

• Parallelize the convolution operations etc.  
• SVE FP16+INT8 vectorization support + extremely high memory bandwidth w/

HBM2 

• Post-K could become world’s biggest & fastest platform for DNN 
training!

 25

Intra-Node

Inter-Node

Massive amount of 
total parallelism, 
only possible via 
supercomputing
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Fugaku Processor 
◆High perf FP16&Int8 
◆High mem BW for convolution 
◆Built-in scalable Tofu network

Unprecedened DL scalability

High Performance DNN Convolution

Low Precision ALU + High Memory Bandwidth + 
Advanced Combining of Convolution Algorithms 
(FFT+Winograd+GEMM)

High Performance and Ultra-Scalable Network  
for massive scaling model & data parallelism

Unprecedented Scalability of Data/

Massive Scale Deep Learning on Fugaku

C P U
For the 

Fugaku
supercomputer

C P U
For the 

Fugaku
supercomputer

C P U
For the 

Fugaku
supercomputer

C P U
For the 

Fugaku
supercomputer

TOFU Network w/
high injection BW 
for fast  
reduction
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A64FX technologies: Core performance
■ High calc. throughput of Fujitsu’s original CPU core w/ SVE
■ 512-bit wide SIMD x 2 pipelines and new integer functions

A0 A1 A2 A3

B0 B1 B2 B3
X            X              X             X

8bit 8bit 8bit 8bit

C

32bit

INT8 partial dot product
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“Isopower” Comparsion with the Best GPU

NVIDIA Volta v100 Fujitsu A64fx (2 A0 chip nodes)

Power 400 W (incl. CPUs, HCAs DGX-1) “similar”

Vectorized MACC Formats FP 64/32/16, INT 32(?) FP 64/32/16, INT 32/16/8 w/INT32 
MACC

Multi-node Linpack 5.9 TF / chip (DGX-1)  > 5.3 TF / 2 chip blade

Flops/W Linpack 15.1 GFlops/W (DGX-2) > 15 Glops/W

Stream Triad 855 GB/s 1.68 TB / s

Memory Capacity 16 / 32 GB 64 GB (32 x 2)

AI Performance 125 (peak) / ~95 (measured) 
Tflops FP16 Tensor Cores

~48 TOPS (INT8 MACC peak)

Price ~$11,000 (SXM2 32GB board 
only)  

~$13,000 (DGX-1, per 16GB GPU)

Talk to Fujitsu ☺
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Large Scale Public AI Infrastructures in Japan
Deployed Purpose AI Processor Inference  

Peak Perf.
Training 

Peak Perf.
Top500  

Perf/Rank
Green500  
Perf/Rank

Tokyo Tech. 
TSUBAME3

July 
2017

HPC + AI  
Public

NVIDIA P100  
x 2160

45.8 PF 
(FP16)

22.9 PF / 45.8PF  
(FP32/FP16)

8.125 PF 
#22

13.704 GF/W 
#5

U-Tokyo  
Reedbush-H/

L

Apr. 
2018  

(update)

HPC + AI  
Public

NVIDIA P100  
x 496

10.71 PF  
(FP16)

5.36 PF / 
10.71PF  

(FP32/FP16)

(Unranked
)

(Unranked)

U-Kyushu 
ITO-B

Oct. 
2017

HPC + AI  
Public

NVIDIA P100  
x 512

11.1 PF  
(FP16)

5.53 PF/11.1 PF  
(FP32/FP16)

(Unranked
)

(Unranked)

AIST-AIRC 
AICC

Oct. 
2017

AI  
Lab Only

NVIDIA P100  
x 400

8.64 PF 
(FP16)

4.32 PF / 8.64PF  
(FP32/FP16)

0.961 PF 
#446

12.681 GF/W 
#7

Riken-AIP 
Raiden

Apr. 
2018  

(update)

AI  
Lab Only

NVIDIA V100  
x 432

54.0 PF  
(FP16)

6.40 PF/54.0 PF  
(FP32/FP16)

1.213 PF  
#280

 11.363 GF/
W 

#10

AIST-AIRC 
ABCI

Aug. 
2018

AI  
Public

NVIDIA V100  
x 4352

544.0 PF 
(FP16)

65.3 PF/544.0 
PF  

(FP32/FP16)

19.88 PF 
#7

14.423 GF/W 
#4

NICT 
(unnamed)

Summer  
2019

AI 
Lab Only

NVIDIA V100 
x 1700程度

~210 PF 
(FP16)

~26 PF/~210 PF  
(FP32/FP16)

???? ????

C.f. US 
ORNL 

Summit

Summer  
2018

HPC + AI  
Public

NVIDIA V100  
x 27,000

3,375 PF  
(FP16)

405 PF/3,375 PF  
(FP32/FP16)

143.5 PF  
#1

14.668 GF/W 
#3

Riken R-CCS 2020   HPC + AI   Fujitsu A64fx   > 4000 PO   >1000PF/ > 400PF   > 15 GF/W 

Inference  
838.5PF 
Training 
86.9 PF 

vs. Summit  
Inf. 1/4  
Train. 1/5 



Predicting Statistics of Asynchronous SGD Parameters for a Large-
Scale Distributed Deep Learning System on GPU Supercomputers

Background 

• In large-scale Asynchronous Stochastic Gradient Descent 
(ASGD), mini-batch size and gradient staleness tend to 
be large and unpredictable, which increase the error of 
trained DNN

Objective function E

W(t)
-ηΣi ∇Ei

W(t+1)
W(t+1)

-ηΣi ∇Ei

W(t+3)

W(t+2)

Twice asynchronous 
updates within 

gradient computation

Staleness=0

Staleness=2

DNN parameters space

Mini-batch size

(NSubbatch: # of samples per one GPU iteration)

Mini-batch size Staleness

Measured

Predicted

4 nodes
8 nodes

16 nodes Measured
Predicted

Proposal 
• We propose a empirical performance model for an ASGD 

deep learning system SPRINT which considers probability 
distribution of mini-batch size and staleness

• Yosuke Oyama, Akihiro Nomura, Ikuro Sato, Hiroki Nishimura, Yukimasa Tamatsu, and Satoshi Matsuoka, "Predicting 
Statistics of Asynchronous SGD Parameters for a Large-Scale Distributed Deep Learning System on GPU 
Supercomputers", in proceedings of 2016 IEEE International Conference on Big Data (IEEE BigData 2016), Washington 
D.C., Dec. 5-8, 2016



Pushing the Limits for 2D Convolution Computation On GPUs  
[To appear SC19]• Background of 2D convolution

• Convolution on CUDA-enabled GPUs is essential for Deep Learning workload
• A typical memory-bound problem with regular access
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Evaluation on Tesla P100 GPU

• Method

(3) Transfer partial sums

• Evaluation
• a single Tesla P100 and 

V100 GPUs
• Single precision

Evaluation on Tesla V100 GPU
[1] Peng Chen, Mohamed Wahib, Shinichiro Takizawa, Satoshi Matsuoka. Pushing the Limits for 2D Convolution Computation On CUDA-enabled GPUs. 
第163回ハイパフォーマンスコンピューティング研究会, Mar. 2018.

[1]

Also applicable to vector processor 
with shuffle ops, e.g. A64FX



Applying Loop Transformations/Algorithm Optimizations to Deep Learning Kernels on cuDNN [1] and ONNX [2]

• Motivation: How can we use faster convolution 
algorithms (FFT and Winograd) with a small 
workspace memory for CNNs?

• Proposal: μ-cuDNN, a wrapper library for cuDNN, 
which applies loop splitting to convolution kernels 
based on DP and integer LP techniques 

• Results: μ-cuDNN achieves significant speedups in 
multiple levels of deep learning workloads, achieving 
1.73x of average speedups for DeepBench's 3×3 
kernels and  1.45x of speedup for AlexNet on Tesla 
V100

✗ Slow
✓ Small memory footprint

✓ Fast
✗ Large memory footprint

Convolution algorithms supported by cuDNN
[1] Yosuke Oyama, Tal Ben-Nun, Torsten Hoefler, Satoshi Matsuoka, Accelerating Deep Learning Frameworks with Micro-batches, In proceedings of IEEE Cluster 2018, Belfast UK, Sep. 10-13, 2018.
[2] (To appear) Yosuke Oyama, Tal Ben-Nun, Torsten Hoefler, Satoshi Matsuoka, Applying Loop Transformations to Deep Neural Networks on ONNX, 情報処理理学会研究報告, 2019-HPC-170. In 並列列/分散/協調処理理に
関するサマーワークショップ (SWoPP2019), Jul. 24-26, 2019.

• Motivation: How can we extend μ-cuDNN to 
support arbitrary types of layers, frameworks 
and loop dimensions?

• Proposal: Apply graph transformations on the 
top of the ONNX (Open Neural Network 
eXchange) format

• Results: 1.41x of speedup for AlexNet on 
Chainer only with graph transformation and 
Squeezing 1.2x of average speedup for 
DeepBench's 3x3 kernels by multi-level splitting

AlexNet before/after the transformation

Graph transformation 
(loop splitting) to an 

ONNX graph

55.7 ms
(Forward)

39.4 ms
(Forward)



μ-cuDNN: Accelerating Deep Learning Frameworks with Micro-batches [1]

• Motivation: How can we use faster convolution algorithms (ex. FFT and Winograd) with a small 
workspace memory for Convolutional Neural Networks (CNNs)?

• Proposal: μ-cuDNN, a wrapper library for the math kernel library cuDNN which is applicable for most 
deep learning frameworks

• μ-cuDNN applies loop splitting by using dynamic programming and integer linear programming techniques 

• Results: μ-cuDNN achieves significant speedups in multiple levels of deep learning workloads
• 1.16x, 1.73x of average speedups for DeepBench's 3×3 kernels on Tesla P100 and V100 respectively
• achieves 1.45x of speedup (1.60x w.r.t. convolutions alone) for AlexNet on V100
✗ Slow
✓ Small memory
     footprint

✓ Fast
✗ Large memory
    footprint

Relative speedups of DeepBench’s forward convolution layers against 
cuDNNConvolution algorithms supported by cuDNN

[1] Yosuke Oyama, Tal Ben-Nun, Torsten Hoefler, Satoshi Matsuoka, Accelerating Deep Learning Frameworks with Micro-batches, In proceedings of IEEE Cluster 2018, Belfast UK, Sep. 10-13, 2018.



Training ImageNet in Minutes

TSUBAME3.
0

ABC
I

Source Ben-nun & Hoefler https://arxiv.org/pdf/
1802.09941.pdf

Rio Yokota, Kazuki Osawa,Yohei Tsuji,Yuichiro Ueno, Hiroki Naganuma, Shun Iwase, Kaku 
Linsho, Satoshi Matsuoka Tokyo Institute of Technology/Riken + Akira Naruse (NVIDIA)

#GPU time

Facebook 512 30 min

Preferred Networks 1024 15 min
UC Berkeley 2048 14 min

Tencent 2048 6.6 min
Sony (ABCI) ~3000 3.7 min

Google (TPU/GCC) 1024 2.2 min

TokyoTech/NVIDIA/Riken 
(ABCI) 4096 ? min



Accelerating DL with 2nd Order Optimization and Distributed Training [Tsuji et al.] => 
Towards 100,000 nodes scalability

▪ Background 
• Large complexity of DL training. 
• Limits of data-parallel distributed 

training. 
• > How to accelerate the training 

further? 

▪ Method 
• Integration of two techniques: 1) 

data- and model-parallel distributed 
training, and 2) K-FAC, an approx 2nd 
order optimization. 

▪ Evaluation and Analysis 
• Experiments on ABCI supercomputer. 
• Up to 128K batch size w/o accuracy 

degradation. 
• Finish training in 35 epochs/10 min/

1024 GPUs in 32K batch size. 
• A performance tuning / modeling.

Osawa et al., Large-Scale Distributed Second-Order Optimization Using Kronecker-Factored Approximate Curvature for Deep 
Convolutional Neural Networks, CVPR 2019

Time prediction with the performance model

Data-parallel Model-parallel

Design our hybrid parallel distributed K-FAC

Batch size # Iterations Accuracy

Goyal et al. 8K 14076 76.3%

Akiba et al. 32K 3519 75.4%

Ying et al. 64K 1760 75.2%

Ours 128K 978 75.0%

Comparison with related work (ImageNet/ResNet-50)



Fast ImageNet Training
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Nvidia’s Collective Comm. Library (NCCL) Tests 

● benchmark GPU collectives for DL frameworks which 
use NCCCL as backend 

● Example visualization: 

 
 
 
 

 
Others:  
 - Tensorflow’s allreduce benchmark (see  
   Tf_cnn_benchmarks for details; needs very recent TF)  
 - PFN has benchmark/data for ChainerMN / PFN-Proto  
    (see their blogpost; unknown if open-source)

Fig. from Nvidia Devblog

Our measurements (following DeepBench specs) for 
Interconnect on Tsubame 2.5 and K computer

Baidu’s Allreduce Benchmark 

● hardcoded 
steps: 
0B→2GiB 

● hardcoded 
#iterations 
per msg size 

● GPU/Cuda-dependency  
easily removable if necessary 

Our “sleepy-allreduce” (modified Intel IMB) 

● emulated DL training 
● alternating 400MiB 

Allreduce and 0.1s 
sleep for compute



Common/Generic Interconnect Benchmarks

Intel MPI Benchmarks (IMB) 

● IMB and OSU benchmarks very similar 
● testing many P2P, collectives, MPI-I/O functions 
● Default comm. size range from 0B→4MiB 

(power-2 steps; can be modified manually) 
● MPI-Allreduce example for K:

OSU Micro-Benchmarks (from Ohio-State Univ) 

● MPI collectives relevant for DL training + p2p BMs: 

 
 
 
 
 
 

 
Many other, less common MPI (micro-)benchmarks: 
 - Netgauge (for eff. bisection bandwidth & other patterns) 
 - BenchIT suite (incl. MPI BMs; more fine-granular steps) 
 - SPEC MPI2007 (more application-centric)  
 - etc.



[1] P. Goyal, P. Doll´ar, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia, and K. He, 
“Accurate, large minibatch SGD: training imagenet in 1 hour,” arXiv preprint arXiv:1706.02677, 2017. 
[2] Y. You, Z. Zhang, C. Hsieh, J. Demmel, and K. Keutzer, “Imagenet training in minutes,” CoRR, abs/
1709.05011, 2017.

➢ Reducing training time of large-scale AI/DL on GPUs-system. 
➢ Time for inference = O(seconds) 
➢ Time for training    = O(hours or days) 

➢ Computation is one of the bottleneck factors 
➢ Increasing the batch size and learning in parallel 

➢ Training ImageNet in 1 hour [1] 
➢ Training ImageNet in ~20 minutes [2] 

➢ Communication also can become a bottleneck 
➢ Due to large message sizes 

Optimizing Collective Communication in DL Training (1 of 3)



Model AlexNet 
(2012)

GoogleNet 
(2015)

ResNet 
(2016)

DenseNet 
(2017)

# of gradients [1] 61M 5.5M 1.7 – 60.2M 15.3 – 30M

Message size 244 MB 22MB 240 MB 120 MB

Huge message size 
(~100MB – 1GB)

[1] T. Ben-Nun and T. Hoefler, “Demystifying parallel and distributed deep learning: An in-depth concurrency 
analysis,” arXiv preprint arXiv:1802.09941, 2018.

Example of Image Classification, ImageNet data set

Optimizing Collective Communication in DL Training (2 of 3)  
(Challenges of Large Message Size)
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➢ Phase 1: Intra-node reduce to the node leader
➢ Phase 2: Inter-node all-reduce between leaders
➢ Phase 3: Intra-node broadcast from the leaders 
Key Results: 

➢ Cut down the communication time up to 51%
➢ Reduce the power consumption up to 32%

Proposal: Separate intra-node and inter-node comm. ➔ multileader hierarchical algorithm

Multileader hierarchical algorithm
• Optimized for inter-node comm.

Ring-based algorithm
▪ Good for large message size
▪ Worse with inter-node comm.

2(P-1) steps, send !  per step
𝑁
𝑃

2( ! -1) steps, !  per step
𝑃
𝑘

 
𝑁 (𝑝 − 𝑘)

𝑃 𝑘

"Efficient MPI-Allreduce for Large-Scale Deep Learning on GPU-Clusters", Truong Thao Nguyen, Mohamed Wahib, Ryousei Takano, Journal 
of Concurrency and Computation: Practice and Experience (CCPE) , Accepted: to appear in 2019.10 

Optimizing Collective Communication in DL Training (3 of 3)



Jens 
Domke

1st large-scale Prototype – Motivation for  
HyperX

Theoretical Advantages (over Fat-Tree) 
● Reduced HW cost (less AOC / SW) 
● Only needs 50% bisection BW
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     Full marathon worth of IB and  
     ethernet cables re-deployed

 
     Multiple tons of  
     equipment moved around

 
     1st rail (Fat-Tree) maintenance 
 
     Full 12x8 HyperX constructed

 
     And much more … 
       - PXE / diskless env ready  
       - Spare AOC under the floor 
       - BIOS batteries exchanged 
 
➔  First large-scale 2.7 Pflop/s 
(DP) 
      HyperX installation in the world!

Fig.1: HyperX with n-dim. integer lattice 
(d1,…,dn) base structure 
fully connected in each dim.

TokyTech’s 2D HyperX: 
● 24 racks (of 42 T2 racks) 
● 96 QDR switches (+ 1st rail) 

without adaptive routing 
● 1536 IB cables (720 AOC) 
● 672 compute nodes 
● 57% bisection bandwidth

Fig.2: Indirect 2-level Fat-Tree

● Lower latency (less hops) 
● Fits rack-based packaging



Jens 
Domke

1:1 comparison (as fair as possible) of  
672-node 3-level Fat-Tree and 12x8 2D HyperX 
● NICs of 1st and 2nd rail even on same CPU socket 
● Given our HW limitations (few “bad” links disabled) 

Wide variety of benchmarks and configurations 
● 3x Pure MPI benchmarks 
● 9x HPC proxy-apps 
● 3x Top500 benchmarks 
● 4x routing algorithms (incl. PARX) 
● 3x rank-2-node mappings 
● 2x execution modes 

Primary research questions 
Q1: Will reduced bisection BW 
       (57% for HX vs. ≥100% for FT)  
       impede performance? 
Q2: Two mitigation strategies 
       against lack of AR? (" e.g. 
       placement vs. “smart” routing) 

Evaluating the HyperX and Summary

 43

Fig.4: Baidu’s (DeepBench) Allreduce (4-byte float) scaled 7" 672 cn  (vs. “Fat-tree / ftree / linear” baseline)

Greener is 
better

1.  Placement mitigation can alleviate bottleneck 
2.  HyperX w/ PARX routing outperforms FT in HPL 
3.  Linear good for small node counts/msg. size 
4.  Random good for DL-relevant msg. size (!  1%) 
5.  “Smart” routing suffered SW stack issues 
6.  FT + ftree had bad 448-node corner case

+
−

3.

4.

5.

6.

Conclusion 
HyperX topology is 
promising and 
cheaper alternative to 
Fat-Trees (even w/o 
adaptive R) !

Fig.3: HPL (1GB pp, and 1ppn); scaled 7" 672 cn

Higher 
is better

1.

2.



Evaluating the HyperX Topology: A Compelling Alternative to Fat-Trees?[SC19]  

[1] Domke et al. “HyperX Topology: First at-scale Implementation and Comparison to the Fat-Tree” to be presented at SC’19 and HOTI’19

     Full marathon worth of IB and  
     ethernet cables re-deployed

 
     Multiple tons of 
     equipment moved around

 
     1st rail (Fat-Tree) maintenance  
 
     Full 12x8 HyperX constructed

 
     And much more … 
       - PXE / diskless env ready 
       - Spare AOC under the floor 
       - BIOS batteries exchanged
 
➔  First large-scale 2.7 Pflop/s 
(DP) 
      HyperX installation in the 
world!

 

Our 2D HyperX: 
• 24 racks (of 42 T2 racks) 
• 96 QDR switches (+ 1st rail) 
• 1536 IB cables (720 AOC) 
• 672 compute nodes 
• 57% bisection bandwidth

1:1 comparison (as fair as possible) of 672-node 3-level Fat-Tree and 12x8 2D 
HyperX 
• NICs of 1st and 2nd rail even on same CPU socket 
• Given our HW limitations (few “bad” links disabled) 

Advantages (over FT) assuming adaptive routing (AR) 
• Reduced HW cost (AOC/switches) " similar perf. 
• Lower latency when scaling up (less hops) 
• Fits rack-based packaging model for HPC/racks 
• Only needs 50% bisection BW to provide 100% throughput for uniform random 
 
Q1: Will reduced bisection BW (57% for HX vs. ≥100%) impede Allreduce 
performance? 
Q2: Mitigation strategies against lack of AR?  (" eg. placement or smart 
routing)

Fig.1: HyperX with n-dim. integer 
lattice (d1,…,dn) base structure 
fully connected in each dim.

Fig.2: Baidu’s (DeepBench) Allreduce (4-byte float) scaled 7"672 cn  (vs. “Fat-tree / ftree / linear” baseline)

Greener is 
better

 

1.  Linear good for small node counts/msg. size 
2.  Random good for DL-relevant msg. size (  1%) 
3.  Smart routing suffered SW stack issues 
4.  FT + ftree had bad 448-node corner case

+
−

1.

2.

3.

4.
 
 
 
 

 
 
HyperX topology 
is promising and 
cheaper alternative 
to state-of-the-art  
Fat-Tree networks!

Funded by and in collaboration with Hewlett 
Packard Enterprise, and supported by 
Fujitsu, JSPS KAKENHI, and JSP CREST



Motivation: GPU memory is relatively small in comparison to recent DL work load 

Analysis:  

Breaking the limitation of GPU memory for Deep Learning 
Haoyu Zhang,Wahib Mohamed, Lingqi Zhang,Yohei Tsuji, Satoshi Matsuoka 



Case Study & Discussion:
Memory Capacity: 
● Not so important as latency 

and throughput

Bandwidth: 
● Higher connection 

bandwidth 
● Lower Memory bandwidth

 Latency: 
● Higher Bandwidth make no 

sense when buffer is too small 
● Latency is decided by physical 

law

Processor: 
● Slower processor is 

acceptable

Proposal： UM-Chainer
prefetch()->explicit swap-in 
no explicit swap-out

Breaking the limitation of GPU memory for Deep Learning 
Haoyu Zhang,Wahib Mohamed, Lingqi Zhang,Yohei Tsuji, Satoshi Matsuoka 



Breaking the limitation of GPU memory for Deep Learning 
Haoyu Zhang,Wahib Mohamed, Lingqi Zhang,Yohei Tsuji, Satoshi Matsuoka 

Assuming we have higher Bandwidth...

Resnet50,Batch-size=128 

16GB/s->64GB/s: 
Training time can be half 

64GB/s->128GB/s: 
Only a little time reduced  

>128GB/s: 
Most of the layers can not make full 
use of the bandwidth 

>512GB/s: 
Time almost do not decrease



LLNL-PRES-XXXXXX 

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore  National 
Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Toward Training a Large 3D Cosmological
CNN with Hybrid Parallelization
The 1st Workshop on Parallel and Distributed Machine Learning 2019 (PDML’19) – Kyoto, Japan 
Yosuke Oyama 1,2,*, Naoya Maruyama 2, Nikoli Dryden 3,2, Peter Harrington 4, Jan Balewski 4, Satoshi Matsuoka 5,1, Marc Snir 3, Peter Nugent 4, and Brian Van Essen 2

1 Tokyo Institute of Technology, 2 Lawrence Livermore National Laboratory, 3 University of Illinois at Urbana-Champaign, 4 Lawrence Berkeley National Laboratory, 5 RIKEN Center for Computational Science, *  oyama.y.aa@m.titech.ac.jp 

August 5, 2019

mailto:oyama.y.aa@m.titech.ac.jp


Background

CosmoFlow [1] is a project to estimate cosmological parameters from 3-dimensional  
universe data by using a 3D CNN

CNN
53 GiB

,
m

σ8
,

Ω 
⎨  ⎬
⎧  ⎫  ⎧

= 0.145

⎫0.242 
⎨   − ⎬

⎩  n,s  
⎭  ⎩  −0.489 ⎭

    Input     Predict 

Input
(4×512×512×512 voxels)

Output
(A vector of length 4)

Problem: GPU memory is too small to process high-resolution universe data 
→ Another way to parallelize the model efficiently?



Background

Data-parallel training distributes data  
samples among GPUs 
✓ Good weak scalability (O(1000) GPUs)

    1. 

2.

input conv

GPU 1

GPU 2

fc 

      Back-prop. 

All-reduce 

      Back-prop.

Model-parallel training distributes the  
computation of a single sample (model)  
among GPUs 
✓ Can use more GPUs per sample 
✓ Can train larger models

input conv fc

GPU 1

Halo exchange

GPU 2 

Data-parallelism + model-parallelism  = Hybrid-parallelism



Proposal: Extending Distconv for 3D CNNs

LBANN + Distconv [2]: A parallelized stencil computation-like hybrid-parallel CNN  
kernel library
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Evaluation: Weak scaling

D

Achieved 111x of speedup over 1  
node by exploiting 
hybrid-parallelism, even if  
layer-wise communication is  
introduced 
The 8-way partitioning is 1.19x  
of 4-way partitioning with a  
mini-batch size of 64 
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Figure: Weak scaling of the CosmoFlow network.



Evaluation: Strong scaling

Achieved 2.28x of speedup on 4 nodes (16 GPUs) compared to one node when N = 1 
The scalability limit here is 8 GPUs, and the main bottleneck is input data loading
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Figure: Breakdown of the strong scaling experiment when N = 1.



Machine Learning Models for Predicting Job Run Time-Underestimation in HPC system [SCAsia 19]

▪ Motivation & Negative effects 
1. When submitting a job, users need to estimate their job 

runtime 

2. If job runtime is underestimated by the users 

3. Job will be terminated by HPC system upon reaching its 
time limit 

• Increasing time and financial cost for HPC users 

• Wasting time and system resources.  

• Hindering the productivity of HPC users and machines 

▪ Method 
• Apply machine learning to train models for predicting whether 

the user has underestimated the job run-time 

• Using data produced by TSUBAME 2.5

Guo, Jian, et al. "Machine Learning Predictions for Underestimation of Job Runtime on HPC System." Asian Conference on Supercomputing Frontiers. Springer, 
2018

▪ Evaluating by Average Precision(AP) 

▪ Evaluating by Simulation with 
Saved-Lost Rate (SLR) 

𝑆𝐿𝑅𝐶 =
𝑆𝑎𝑣 𝑒𝑑

𝐿 𝑜𝑠 𝑡 + 𝑃 𝑢 𝑛 𝑖𝑠h 𝑚 𝑒𝑛 𝑡
=

∑
𝑇𝑃
𝑡𝑝=1 (𝑗 . 𝑢 𝑠𝑒𝑑 _𝑤𝑎 𝑙𝑙𝑡 𝑖𝑚 𝑒 − 𝐶)𝑡𝑝

∑
𝑃
𝑝=1

𝑗 . 𝑢 𝑠𝑒𝑑 _𝑤𝑎 𝑙𝑙𝑡 𝑖𝑚 𝑒𝑝 + ∑
𝐹𝑃
𝑓𝑝=1

𝐶𝑓𝑝

• Runtime-underestimated jobs can be predicted with 
different accuracy and SLR at different checkpoint times 

• Summing up the “Saved” time of all the applications at 
best SLRs checkpoints, 24962 hours can be saved in total 
with existing TSUBAME 2.5 data 

• Helping HPC users to reduce time and financial loss 
• Helping HPC system administrators free up computing 

resources



Transistor Lithography Scaling 
(CMOS Logic Circuits, DRAM/SRAM)

Loosely Coupled with Electronic Interconnect

Data Data

Hardware/Software System APIs 
Flops-Centric Massively Parallel Architecture

Flops-Centric Monolithic System Software

Novel Devices + CMOS (Dark Silicon) 
(Nanophotonics, Non-Volatile Devices etc.)

Ultra Tightly Coupled w/Aggressive  
3-D+Photonic Switching Interconnected

Hardware/Software System APIs 
“Cambrian” Heterogeneous Architecture

Cambrian Heterogeneous System Software

Heterogeneous CPUs + Holistic Data

Data Data

Homogeneous General Purpose Nodes  
+ Localized Data

Reconfigurable  
Dataflow Optical  

ComputingDNN& 
Neuromorphic

Massive BW 
3-D Package

Quantum 
ComputingLow Precision  

Error-Prone

Non-Volatile  
Memory

Flops-Centric Monolithic Algorithms and 
Apps

Cambrian Heterogeneous Algorithms and 
Apps

Compute 
Nodes

Gen CPU Gen CPU

汎⽤用CPU Gen CPU

~2025  
M-P Extinction  

Event 

Many Core Era
Post Moore  
Cambrian Era

Compute 
Nodes

Compute 
Nodes

Compute 
Nodes



R-CCS Strategies Towards Post-Moore Era
● Basic Research on Post-Moore

● Funded 2017: DEEP-AI CREST (Matsuoka)
● Funded 2018: NEDO 100x 2028 Processor Architecture (Matsuoka, Sano, 

Kondo, SatoK)
● Funded 2019: Kiban-S Post-Moore Algorithms (NakajimaK etc.)
● Submitted: Neuromorphic Architecture (Sano etc. w/Riken AIP, Riken CBS 

(Center for Brain Science))
● In preparation: Cambrian Computing (w/HPCI Centers)

● Author a Post-Moore Whitepaper towards Fugaku-next
● All-hands BoF last week at annual SWoPP workshop
● Towards official “Feasibility Study” towards Fugaku-next
● Similar efforts as K => Fugaku started in 2012



2028: Post-Moore Era
～2015 ~25 Years Post-Dennard,  

Many-core Scaling era

2016～Moore’s Law Slowing Down

2025～Post-Moore Era, end of transistor  
lithography (FLOPS) improvement

Research: Architectural investigation of perf. improvement ~2028
● 100x in 2028 c.f. mainstream high-end CPUs circa 2018 across applications

Key to performance improvement: from FLOPS to Bytes – data movement architectural 
optimization

● CGRA – Coarse-Grained Reconfigurable Vector Dataflow
● Deep & Wide memory architecture w/advanced 3D packaging & novel memory devices
● All-Photonic DWM interconnect w/high BW, low energy injection
● Kernel-specific HW optimization w/low # of transistors & associated system software, programming, and 

algorithms

Basic Research #1: NEDO 100x Processor



Towards 100x processor in 2028
● Various combinations of CPU architectures, new memory devices and 3-D technologies
● Perf. measurement/characterization/models for high-BW intra-chip data movement
● Cost models and algorithms for horizontal & hierarchical data movement
● Programming models and heterogeneous resource management

NEDO 100x Processor

12 Apr, 2019

2028 Strawman 100x  
Architecture

Future HPC & BD/AI Converged 
Applications

100x BYTES-centric 
architecture through 

performance 
simulations (R-CCS)

Heterogeneous & 
High BW Vector CGRA 
architecture (R-CCS)

High-Bandwidth 
Hierarchical Memory 

systems and their 
management & 

Programming (Tokyo Tech)

New programming 
methodologies for 

heterogeneous, high-
bandwidth systems 

(Univ. Tokyo)
> 1TB NVM

Novel memory devices
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