
France-Japan-Germany trilateral workshop
Convergence of HPC and Bata Science

for Future Extreme Scale Intelligent Applications
November 6th-8th, 2019

Kento Sato
High Performance Big data Research Team

Mission:
Convergence of AI, Big Data and HPC

Research and software
development for accelerating

HPC workloads and
applications by using Big

Data/AI techniques

AI/BD for HPC

Research and software
development for accelerating

AI/Big data workloads and
applications on HPC systems

(i.e., large-scale systems)

HPC for AI/BD

R&D for HPC

3

§ R&D for HPC
— Reproducibility in MPI/OpenMP applications
— Design space exploration for the Post-Moore era

§ AI/BD for HPC
— Big data compression with AI techniques
— System software optimization with AI techniques
— System log analysis and prediction

§ HPC for AI/Big data
— Deep learning framework tuning on HPC systems

Current research topics

4

▪ Generation: Scientific big data is generated every day all over the
world
— LHC (Large Hadron Collider) in CERN generated about 88PB of data in

2018 [1]
• “Data archival is expected to be two-times higher during Run 3 and five-times

higher or more during Run 4 (foreseen for 2026 to 2029). “

Big Data Generation and Transfer

[1] Esra Ozcesmeci, “LHC: pushing computing to the limits”, https://home.cern/news/news/computing/lhc-pushing-computing-limits March 1st, 2019

LHC Run1 LHC Long
Shutdown LHC Run2 LHC Run 3 LHC Run 4

x2 x5Te
ra

 b
yt

es

https://home.cern/news/news/computing/lhc-pushing-computing-limits

5

▪ Transfer: Data transfer is an essential part of data analytics
— Big data transfer from sensors to computers

• Generated data from sensors must be transferred to internal/external computers
for the analysis

• The facilities needs to transfer the data to external collaborators via WAN
– e.g.) In LHC, 830 PB of data and 1.1 billion files were transferred all over the

world [1]

Big Data Generation and Transfer (Cont’d)

[1] Esra Ozcesmeci, “LHC: pushing computing to the limits”, https://home.cern/news/news/computing/lhc-pushing-computing-limits March 1st, 2019

Efficient data transfer is important in big data analysis

Big data transfer

Sensors Computers

https://home.cern/news/news/computing/lhc-pushing-computing-limits

6

▪ RIKEN has SPring-8 large synchrotron radiation facility
generating PB-order of big data
— Opened in 1997 in Harima, located in the same Hyogo prefecture as R-

CCS
— Managed by RIKEN, with Japan synchrotron radiation research institute

(JASRI)
— SPring-8 stands for Super Photon ring-8 GeV

• 8 GeV (giga electron volts) is the energy of electron beam circulation in the
storage ring

SPring-8

SPring-8（FY1997～）

RIKEN SPring-8 Center (RSC)

7

Big data transfer in SPring-8
▪ SPring-8 public beamline (26 BLs) generated 0.32 PB/year in 2017
▪ With the next generation detector (CITIUS), it is projected that the facility

will generate 1.3 ExaB of raw data per year in 2025
— Actual transfer size can be reduced to 100-400 PB by

• Image averaging/extraction
• Reducing duty ratio to throttle data generation rate

We are trying to compress big data
to accelerate data transfer from sensors to HPC systems

Facility

Sensor
Near-sensor

servers

PE

PE

PE

PE

Internal/External
computers

D
at

a
b

uf
fe

r

1.3 EB

Image averaging/extraction and throttling

Intermediate
Storage

8

Prediction is one of keys for good compression

1.1 1.5 1.8 2.1

1.0 1.4 2.3 2.7

1.3 1.8 2.5 3.1

1.9 2.1 2.6 3.3

1.1 1.5 1.8 2.1

1.0 1.3 2.3 2.7

1.3 1.8 2.5 3.0

1.9 1.9 2.5 3.3

Original data Predicted data

0 0 0 0

0 0.1 0 0

0 0 0 0.1

0 0.2 0.1 0

diff
(−) =

Compressed data

gzip
(LZ77 & Huffman encoding)

gunzip
0 0 0 0

0 0.1 0 0

0 0 0 0.1

0 02. 0.1 0

1.1 1.5 1.8 2.1

1.0 1.3 2.3 2.7

1.3 1.8 2.5 3.0

1.9 1.9 2.5 3.3

Predicted data

diff
(+)

1.1 1.5 1.8 2.1

1.0 1.4 2.3 2.7

1.3 1.8 2.5 3.1

1.9 2.1 2.6 3.3

Original data

=

Compression

Decompression

Delta

Delta

Sequence of same values as well as
same sequence of values are likely to

appear many times

9

§ PredNet [1]
— Deep recurrent convolutional neural network
— Given an frame of a picture, this NN can predict multiple

future frames

We use deep neural network (PredNet) for prediction

Published as a conference paper at ICLR 2017

1
Predicted

Actual

2
Predicted

Actual

3
Predicted

Actual

4
Predicted

Actual

5
Predicted

Actual

6
Predicted

Actual

7
Predicted

Actual

8
Predicted

Scrambled

time →
Figure 4: PredNet predictions for car-cam videos. The first rows contain ground truth and the second
rows contain predictions. The sequence below the red line was temporally scrambled. The model
was trained on the KITTI dataset and sequences shown are from the CalTech Pedestrian dataset.

respectively, compared to the CNN-LSTM Encoder-Decoder. More details, as well as a thorough
investigation of systematically simplified models on the continuum between the PredNet and the
CNN-LSTM Encoder-Decoder can be found in Appendix 5.1. Briefly, the elementwise subtraction
operation in the PredNet seems to be beneficial, and the nonlinearity of positive/negative splitting
also adds modest improvements. Finally, while these experiments measure the benefits of each com-
ponent of our model, we also directly compare against recent work in a similar car-cam setting, by
reporting results on a 64x64 pixel, grayscale car-cam dataset released by Brabandere et al. (2016).
Our PredNet model outperforms the model by Brabandere et al. (2016) by 29%. Details can be
found in Appendix 5.2. Also in Appendix 5.2, we present results for the Human3.6M (Ionescu
et al., 2014) dataset, as reported by Finn et al. (2016). Without re-optimizing hyperparameters, our

8

t=1 t=2 t=3 t=5t=4 t=6 t=7 t=8 t=9 t=10

Prediction
[1] Lotter, W., Kreiman, G., Cox, D.: Deep predictive coding networks for video prediction and
unsupervised learning. arXiv preprint arXiv:1605.08104 (2016)

https://coxlab.github.io/prednet/

10

§ We train PredNet to learn how pixels move and how fast
— i.e.) Giving a number of time evolutional frames to PredNet

§ Example
— When compressing frames from t=2 to t=5, we predict future frames

from original data (t=1)
— We compute diff, apply series of encoding
— We only store (1) base frame data and (2) compressed data

Predict future frames and compress data

t=1 t=2 t=3 t=5t=4

PredNet

diff diff diff diff

Additional
encoding

Compressed
data

Compressed
data

Compressed
data

Compressed
data

Training data:
Time evolutional
frame data set

PredNet

Training Inference + Data compression

11

§ Accelerate compression time with distributed GPUs

Other things to do

I/O time
(of original data)<I/O time

(of compressed data)Compression time +
GPU acceleration at large-scale

§ Develop new predictive encoding NN to predict more
future frames with higher accuracy
— We use PredNet as a black box
— We will extend PredNet for more accurate prediction
— e.g.) Interval=5 à We store original data every 5 step and apply NN-

based compression to the rest of frames.

t=1 t=2 t=3 t=5t=4 t=6 t=7 t=8 t=9 t=10

Base
frame

Frames to be compressed

12

§ R&D for HPC
— Reproducibility in MPI applications
— Design space exploration for the Post-Moore era

§ AI/BD for HPC
— Big data compression with AI techniques
— System software optimization with AI techniques
— System log analysis and prediction

§ HPC for AI/Big data
— Deep learning framework tuning on HPC systems

Current research topics

13

Checkpoint/restart

failure Time

check
point

suspend

check
point

suspend

check
point

suspend

PFS (Parallel file system)

Efficient use of C/R is important for large-scale execution

▪ Checkpoint-and-Restart is commonly used technique for large-scale
applications running for long time

▪ Checkpoint/Restart
— Write a snapshot of an application
— On a failure, the application can restart from the last checkpoint

▪ Checkpoint/restart is one of major I/O workloads in HPC systems
— PFS checkpoint: 10 – 30 mins

14

Many configurations in C/R libraries

▪ Checkpoint location
— Capacity v.s. Performance v.s. Reliability

▪ Checkpoint interval
— Each level of checkpoint interval in multi-level checkpointing

▪ Erasure encoding
— What erasure encoding should be used ?
— Group size (or Failure group size)

▪ Many others …

Given an execution environment,
finding optimal configurations is challenging
as C/R scheme becomes more complicated

15

Finding optimal interval for efficient checkpointing

▪ Tradeoff
— Frequent checkpoint: Unnecessarily spend more I/O time for checkpointing
— Infrequent checkpoint: You may lose much more useful computation on a

failure

▪ Even if you use state-of-the-art C/R techniques, poorly
determined checkpoint intervals make system resilience worse
than simple C/R

⇒ Finding optimal checkpoint interval is important for efficient C/R

Frequent
checkpoint

Infrequent
checkpoint

Low overhead but …
less resilient

more resilient but …
huge overhead

16

Simple checkpoint model [1]

Markov model Formulation(Efficiency) Analytical solution
(Optimal interval)

Comp
ute

Checkp
oint

N. Vaiday’s
checkpointing

model
Restar

t

failure

failure

failure

While this model is simple to compute opt. interval,
writing all checkpoints into PFS introduces huge I/O overhead

T Checkpoint interval

C Checkpoint time

R Restart time

λ Failure rate

▪ One of approaches is modeling checkpointing behaviors
▪ Execution states can be categorized into compute, checkpoint and recovery

state
▪ Transitions from one state to another can be described as transition diagram
▪ Assuming transitions occur based on PDF, easily compute expected time

[1] Nitin H. Vaidya. 1995. On Checkpoint Latency. Technical Report

17

Asynchronous multi-level checkpointing (Async. MLC)
[2]
▪ With the emergence of fast local-storage (e.g., NVM), MLC has become a

common C/R approach
▪ Hierarchically write checkpoints

— XOR: Frequently for a single-node failure
— PFS : Infrequently for multi-node failure in the background

▪ With this more complicated C/R, finding each level of checkpointing
intervals becomes more challenging, but important

We modeled this async MLC for finding the optimal ckpt intervals

Async MLC

Level-1

Level-2

XOR

PFS

Storage hierarchy time

Node-local storage

PFS

[2] Kento Sato, Adam Moody, Kathryn Mohror, Todd Gamblin, Bronis R. de Supinski, Naoya Maruyama and Satoshi Matsuoka,
"Design and Modeling of a Non-blocking Checkpointing System", SC12, Salt Lake, USA, Nov, 2012

18

Level-k checkpoint interval

Level-k checkpoint time

Level-k restart time

Level-k failure rate

Markov model of async MLC

No failure

Level-i failure

k

k

Level-i recovery

k
Level-i failure

k

Transition probabilities (pi(t)) and the expected times (ti(t))

Markov model of async MLC

Probability (No failure):
Expected time (No failure):

Probability (Level-i failure):

Expected time (Level-i failure):

Poison distribution

Input

Efficiency

A ratio of time an application can
spend for its useful computation

Output

19

Modeling for optimal checkpointing
Checkpointing model Formulation

(Efficiency)
Analytical solution
(Optimal interval)

Single level
checkpointing

Analytical solution

Mutil-level
Checkpointing

(SCR)

Mutil-level
Checkpointing

(FTI)

Com
pute

Check
point

N. Vaiday’s
checkpointin

g model
Resta
rt

failur

efailur

e

failur

e

Numerical solution

Complicated C/R models have
finding analytical solution harder

We tried to model to evaluate resiliency of more complicated erasure encodings
We found that it is significantly difficult to formulate C/R models

unless we simply the model and/or make strong assumption

infeasible
infeasible

20

Simulation for optimal checkpointing in
multi-level checkpointing in SCR

Modeling Simulation

▪ We are shifting from modeling approach to simulation
— (Simulation is also important to validate the model)

▪ Pros
— Simulation can be applied to more complicated
— Simulation can estimate expected execution time much more accurately

than modeling approach
▪ Cons

— Simulation takes time to explore different C/R parameters and find optimal
checkpoint interval

While simulation is useful when evaluating efficient of C/R
If one wants to know the optimal checkpoint interval

when submitting a job, Simulation is not practical approach

21

AI for C/R

▪ Combine simulation with AI techniques
▪ Generate training data consisting input/output data by

running simulator in many different scenarios
—Checkpoint and recovery time, failure rates, type of erasure encodings

(partner, XOR, RS etc.), node allocation, network topology (fat tree, torus
etc.)

▪ Train and Build a C/R NN model to find optimal configurations (e.g.,
checkpoint location, checkpoint intervals and a type of erasure coding)

C/R NN modelInput Output

Optimal
Checkpoint

configurations

Different C/R
scenarios

Summary:
Convergence of AI, Big Data and HPC

1. AI for data compression
2. AI for checkpointing optimization

Poster

Research and software
development for accelerating

HPC workloads and
applications by using Big

Data/AI techniques

AI/BD for HPC

Research and software
development for accelerating

AI/Big data workloads and
applications on HPC systems

(i.e., large-scale systems)

HPC for AI/BD

R&D for HPC

